PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 02 |

Tytuł artykułu

Augmenting drought tolerance in sorghum by silicon nutrition

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Silicon (Si) distribution and accumulation in plant organs is widely reported as beneficial to overcome biotic and abiotic stresses. The investigation on distribution of Si in plant organs under water stress conditions was studied through experiments conducted at Arid Agriculture University, Pakistan during 2007–2009. Treatments (Si₂₀₀: 200 ml l⁻¹ of potassium silicate and Si₀: control or absence of silicon) were replicated thrice with two sorghum cultivars; SPV462 (drought susceptible) and Johar-1 (drought tolerant) screened using osmotic media of PEG6000 (-4.0, -6.0, -8.0 and -10.0 MPa). The results exhibited increased leaf water potential, leaf area index, SPAD chlorophyll with increased silicon concentration in leaves and roots of drought-tolerant genotype as compared to SPV462. Johar-1 exhibited maximum values for net assimilation and relative growth rate under silicon treatment in comparison to silicon absence. Similarly, maintenance of transpiration rate, because of accumulation of silicon in leaves resulted in optimum leaf water potential and optimum growth of crop.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

02

Opis fizyczny

p.473-483,fig.,ref.

Twórcy

autor
  • Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi, 46000, Pakistan
autor
  • Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre University of Alberta Canada, Edmonton, Canada
autor
  • Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi, 46000, Pakistan

Bibliografia

  • Agarie S, Uchida H, Agata W, Kubota F, Kaufman PB (1998) Effects of silicon on transpiration and leaf conductance in rice plants (Oryza sativa L.). Plant Prod Sci 1:89–95.
  • Al-aghabary K, Zhu Z, Shi Q (2004) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J Plant Nutr 27:2101–2115.
  • Almeida SM, Santos C, Labate C, Guidetti GS, Santana BJ, Ferreira LC, DeLima RO, Fritsche NR (2012) Breeding for water use efficiency. In: Fritsche-Neto R, Borém A (eds) Plant breeding for abiotic stress tolerance. Springer, Berlin, pp 87–102. doi:10.1007/978-3-642-30553-5_6.
  • Antonio C, Pinheiro C, Chaves MM, Ricardo CP, Ortuno MF, Thomas-Oates J (2008) Analysis of carbohydrates in Lupinus albus stems on imposition of water deficit, using porous graphitic carbon liquid chromatography–electrospray ionization mass spectrometry. J Chromatogr A 1187:111–118.
  • Bacelar EA, Correia CM, Moutinho-Pereira JM, Gonc¸alves BC, Lopes JI, Torres-Pereira JMG (2004) Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. Tree Physiol 24:233–239.
  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54.
  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot Lond 103:551–560.
  • Dallagnol LJ, Rodrigues FA, Mielli MVB, Ma JF, Datnoff LE (2009) Defective active silicon uptake affects some components of rice resistance to brown spot. Phytopathology 99:116–121.
  • Dallagnol LJ, Rodrigues FA, DaMatta FM, Mielli MVB, Pereira SC (2011) Deficiency in silicon uptake affects cytological, physiological, and biochemical events in the rice–Bipolaris oryzae interaction. Phytopathology 101:92–104.
  • Datnoff LE, Snyder CH, Korndorfer GH (2001) Silicon in agriculture. Studies in plant science, vol 8. Elsevier, New York.
  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci USA 91(1):11–17. doi:10.1073/pnas.91.1.11
  • Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155(2):155–160. doi:10.1111/j.1744-7348.2009.00343.x
  • FAO (2012) FAOSTAT database: FAO, Rome, Italy. http://faostat.fao.org.
  • Farooq M, Hussain M, Wahid A, Siddique KHM (2012) Drought stress in plants: an overview. In: Aroca R (ed) Plant responses to drought stress. Springer, Berlin, pp 1–33. doi:10.1007/978-3-642-32653-0_1.
  • Feng J, Shi Q, Wang X, Wei M, Yang F, Xu H (2010) Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Sci Hortic 123:521–530.
  • Gao XP, Zou CQ, Wang LJ, Zhang FS (2006) Silicon decreases transpiration rate and conductance from stomata of maize plants. J Plant Nutr 29:1637–1647.
  • George HS, Vladimir VM, Lawrence ED (2006) Silicon. In: Allen VB, David JP (eds) Handbook of plant nutrition Books in soils, plants, and the environment. CRC Press, New York, pp 551–568. doi:10.1201/9781420014877.
  • Gocke M, Liang W, Sommer M, Kuzyakov Y (2013) Silicon uptake by wheat: effects of Si pools and Ph. J Plant Nutr Soil Sci 176:551–560. doi:10.1002/jpln.201200098.551.
  • Gong HJ, Chen KM, Chen GC, Wang SM, Zhang CL (2003) Effects of silicon on growth of wheat under drought. J Plant Nutr 26(5):1055–1063. doi:10.1081/pln-120020075.
  • Gong HJ, Randall DP, Flowers TJ (2006) Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ 29:1970–1979.
  • Gonzalo MJ, Lucena JJ, Hernández-Apaolaza L (2013) Effect of silicon addition on soybean (Glycine max) and cucumber (Cucumis sativus) plants grown under iron deficiency. Plant Physiol Bioch 70:455–461.
  • Gottardi S, Iacuzzo F, Tomasi N, Cortella G, Manzocco L, Pinton R, Romheld V, Mimmo T, Scanpicchio M, Dalla Costa L, Cesco S (2012) Beneficial effects of silicon on hydroponically grown corn salad (Valerianella locusta (L.) Laterr) plants. Plant Physiol Biochem 56:14–23.
  • Guo W, Hou YL, Wang SG, Zhu YG (2005) Effect of silicate on the growth and arsenate uptake by rice (Oryza sativa L.) seedlings in solution culture. Plant Soil 272:173–181.
  • Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87. doi:10.1007/978-1-4614-4747-4_2.
  • Hattori T, Inanaga S, Tanimoto E, Lux A, Luxova M, Sugimoto Y (2003) Silicon-induced changes in viscoelastic properties of sorghum root cell walls. Plant Cell Physiol 44(7):743–749. doi:10.1093/pcp/pcg090.
  • Hattori T, Inanaga S, Araki H, An P, Morita S, Luxova M, Lux A (2005) Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol Plant 123(4):459–466. doi:10.1111/j.1399-3054.2005.00481.
  • Hattori T, Sonobe K, Inanaga S, An P, Tsuji W, Araki H, Eheji AE, Morita S (2007) Short term stomatal responses to light intensity changes and osmotic stress in sorghum seedlings with and without silicon. Environ Exp Bot 60:177–182.
  • Hattori T, Sonobe K, Araki H, Inanaga S, An P, Morita S (2008) Silicon application by sorghum through the alleviation of stress-induced increase in hydraulic resistance. J Plant Nutr 31(8):1482–1495. doi:10.1080/01904160802208477.
  • Hayano-Kanashiro C, Calderon Vazquez C, Ibarra-Laclette E, Herrera-Estrella L, Simpson J (2009) Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation. PLoS One 4(10):7531.
  • Hossain MT, Mori R, Soga K, Wakabayashi K, Kamisaka S, Fujii S, Yamamoto R, Hoson T (2002) Growth promotion and an increase in cell wall extensibility by silicon in rice and some other Poaceae seedlings. J Plant Res 115:23–27.
  • Hunt R (1978) Plant growth analysis. (Studies in biology, 96). Edward Arnold, London.
  • Inanaga S, Okasaka A, Tanaka S (1995) Does silicon exist in association with organic-compounds in rice plant? Soil Sci Plant Nutr 41(1):111–117.
  • Kramer PJ, Boyer JS (1995) Water relations of plants and soil. Academic, San Diego.
  • Kupfer C, Kahnt G (1992) Effects of the application of amorphous silica on transpiration and photosynthesis of soybean plants under varied soil and relative air humidity conditions. J Agron Crop Sci 168:318–325.
  • Lambers H, Chapin FS, Pons TL (2009) Plant physiological ecology, vol 2. Springer, New York.
  • Li YP, Ye W, Wang M, Yan XD (2009) Climate change and drought: a risk assessment of crop-yield impacts. Clim Res 39(1):31–46. doi:10.3354/cr00797.
  • Liang YC (1998) Effects of Si on leaf ultrastructure, chlorophyll content and photosynthetic activity in barley under salt stress. Pedosphere 8:289–296.
  • Liang Y, Sun W, Zhu Y-G, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428.
  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54(392):2393–2401. doi:10.1093/jxb/erg262.
  • Lux A, Luxova M, Hattori T, Inanaga S, Sugimoto Y (2002) Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiol Plantarum 115(1):87–92. doi:10.1034/j.1399-3054.2002.1150110.x.
  • Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, Amsterdam.
  • Ma JF, Miyake Y, Takahashi E (2001) Chapter 2 silicon as a beneficial element for crop plants. In: Datnoff GHSLE, Korndörfer GH (eds) Studies in Plant Science. Elsevier, pp 17–39.
  • Ma CC, Li QF, Gao YB, Xin TR (2004a) Effects of silicon application on drought resistance of cucumber plants. Soil Sci Plant Nutr 50:623–632.
  • Ma QF, Turner DW, Levy D, Cowling WA (2004b) Solute accumulation and osmotic adjustment in leaves of Brassica oilseeds in response to soil water deficit. Aust J Agr Res 55(9):939–945. doi:10.1071/ar03183.
  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691.
  • Mali M, Aery NC (2008) Influence of silicon on growth, relative water contents and uptake of silicon, calcium and potassium in wheat grown in nutrient solution. J Plant Nutr 31:1867–1876.
  • Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56(414):1255–1261. doi:10.1093/jxb/eri121.
  • Miyake Y, Takahashi E (1985) Effect of silicon on the growth of soybean plants in a solution culture. Soil Sci Plant Nutr 31:625–636.
  • Pallardy SD (2008) Physiology of woody plants, 3rd edn. Elsevier Science, Amsterdam.
  • Pavlovic J, Samardzic J, Maksimović V, Timotijevic G, Stevic N, Laursen KH, Hansen TH, Husted S, Schjoerring JK, Liang Y, Nikolic M (2013) Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. New Phytol 198:1096–1107.
  • Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12(3):267–274. doi:10.1016/j.pbi.2009.04.009.
  • Rouphael Y, Cardarelli M, Schwarz D, Franken P, Colla G (2012) Effects of drought on nutrient uptake and assimilation in vegetable crops. In: Aroca R (ed) Plant responses to drought stress. Springer, Berlin, pp 171–195. doi:10.1007/978-3-642-32653-0_7.
  • Savant NK, Snyder GH, Datnoff LE (1997) Silicon management and sustainable rice production. In: Sparks DL (ed) Adv Agron 58: 151–199.
  • Savant NK, Korndorfer GH, Datnoff LE, Snyder GH (1999) Silicon nutrition and sugarcane production: a review. J Plant Nutr 22(12):1853–1903. doi:10.1080/01904169909365761.
  • Savvas D, Gizas G, Karras G, Lydakis-Simantiris N, Salahas G, Papadimitriou M, Tsouka N (2007) Interactions between silicon and NaCl-salinity in a soilless culture of roses in greenhouse. Eur J Hortic Sci 72:73–79.
  • Sonobe K, Hattori T, An P, Tsuji W, Eneji E, Tanaka K, Inanaga S (2009) Diurnal variations in photosynthesis, stomatal conductance and leaf water relation in sorghum grown with or without silicon under water stress. J Plant Nutr 32:433–442.
  • Tahir MA, Rahmatullah T, Aziz M, Ashraf M, Kanwal S, Muhammad A (2006) Beneficial effects of silicon in wheat under salinity stress-pot culture. Pak J Bot 38:1715–1722.
  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer, Sunderland.
  • Yoshida S (1975) The physiology of silicon in rice. Technical bulletin no. 25, Food Fertilizer Technology Centre, Taipei.
  • Zhang C, Moutinho-Pereira J, Correia C, Coutinho J, Gonc¸alves A, Guedes A, Gomes-Laranjo J (2013) Foliar application of Sili-K® increases chestnut (Castanea spp.) growth and photosynthesis, simultaneously increasing susceptibility to water deficit. Plant Soil 365:211–225.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9855e36d-afa8-4512-bc43-1d5cc4ee27f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.