PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 53 | 1 |

Tytuł artykułu

Response of maize, pea and radish roots to allelochemical stress

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We examined whether allelochemical stress leads to increased lipoxygenase activity in roots of sweet maize (Zea mays L. ssp. saccharata), pea (Pisum sativum L.) and radish (Raphanus sativum L. var. radicula). The lipoxygenase activity of soluble and membrane-bound fractions was assessed in roots after exposure to ferulic and p-coumaric acids. Lipid peroxidation and membrane injury were determined as indicators of stress. Increased lipoxygenase activity of both studied fractions was followed by lipid peroxidation and plasma membrane injury. The results suggest the key role of lipoxygenase in plasma membrane injury during allelochemical stress caused by administration of hydroxycinnamic acids.

Wydawca

-

Rocznik

Tom

53

Numer

1

Opis fizyczny

p.32-37,fig.,ref.

Twórcy

autor
  • Department of Plant Physiology, Poznan University of Life Sciences, Wołynska 35, 60–637 Poznan, Poland
autor

Bibliografia

  • BARACAT-PEREIRA MC, DE ALMEIDA OLIVEIRA MG, DE BARROS EG, MOREIRA MA, and SANTORO MM. 2001. Biochemical propertiesof soybean leaf lipoxygenases: Presence of solubleand membrane bound forms. Plant Physiology andBiochemistry 39: 91–98.
  • BAZIRAMAKENGA R, LEROUX GD, and SIMARD RR. 1995. Effects of benzoic and cinnamic acids on membrane permeabilityof soybean roots. Journal of Chemical Ecology 21:1271–1285.
  • BLEE E. 1998. Phytooxylipins and plant defence reactions. Progress in Lipid Research 37: 33–72.
  • BLOCK A, SCHMETLZ E, JONES JB, and KLEE HJ. 2005.Coronatine and salicylic acid: The battle betweenArabidopsis and Pseudomonas for phytohormone control.Molecular Plant Pathology 6: 79–83.
  • BRADFORD MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizingthe principle of protein-dye binding. AnalyticalBiochemistry 72: 248–254.
  • CATALA A. 2006. An overview of lipid peroxidation with emphasis on outer segments of photoreceptors and the chemiluminescence assay. International Journal ofBiochemistry and Cell Biology 38: 1482–1495.
  • CATALA A. 2009. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions.Chemistry and Physics of Lipids 157: 1–11
  • CRUZ-ORTEGA R, AYALA-CORDERO G, and ANAYA AL. 2002. Allelochemical stress produced by aqueous leachates of Callicarpa acuminate: effects on roots of bean, maize andtomato. Physiologia Plantarum 116: 20–27.
  • ECKARDT NA. 2008. Oxylipin signalling in plant stress responses. The Plant Cell 20: 495–497.
  • ESHDAT Y, HOLLAND D, FALTIN Z, and BEN-HAYYIM G. 1997. Plant glutathione peroxidases. Physiologia Plantarum 100: 234–240.
  • FEUSSNER I, and WASTERNACK C. 2002. The lipoxygenase pathway. Annual Review of Plant Biology 53: 275–297.
  • GALINDO JCG, HERNANDEZ A, DAYAN FE, TELLEZ MR, MACIAS FA, PAUL RN, and DUKE SO. 1999. Dehydrozaluzanin c, a naturalsesquiterpenolide, causes rapid plasma membrane leakage. Phytochemistry 52: 805–813.
  • GIBIAN MJ, and VANDENBERG P. 1987. Product yield in oxygenation of linoleate by soybean lipoxygenase: thevalue of the molecular extinction coefficient in thespectrophotometric assay. Analytical Biochemistry163: 343–349.
  • GLASS ADM, and DUNLOP J. 1974. Influence of phenolic acids on ion uptake. IV. Depolarization of membrane potentials.Plant Physiology 54: 855–858.
  • GMEREK J, and POLITYCKA B. 2010. Generation of active oxygen species in roots of maize, pea and radish as response to exogenous ferulic and p-coumaric acids. Allelopathy Journal 25(2): 475–484.
  • GUTTERIDE JMC. 1988. Lipid peroxidation: some problems and concepts. In: Halliwell B [ed.], Oxygen Radicals and Tissue Injury, 9–19. The Federation of American Societies for Experimental Biology, Bethesda, MD.
  • HEATH RL, and PACKER L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acidperoxidation. Archives of Biochemistry and Biophysics125: 189–198.
  • KACPERSKA A. 1991. Plant resistance on environmental abiotic stress factors and the methods of its estimation. PostępyNauk Rolniczych 1(2): 21–32. (In Polish).
  • LARA-NUŃEZ A, ROMERO-ROMERO T, VENTURA JL, and BLANCAS V. 2006. Allelochemical stress causes inhibition of growthand oxidative damage in Lycopersicon esculentum Mill. Plant, Cell and Environment 29: 2009–2016.
  • LIAVONCHANKA A, and FEUSSNER I. 2006. Lipoxygenases: occurrence, functions and catalysis. Journal of Plant Physiology 163: 348–357.
  • MACRI F, VIANELLO A, and PENNAZIO S. 1986. Salicylate-collapsed membrane potential in pea stem mitochondria.Physiologia Plantarum 67: 136–140.
  • NIGAM S, and SCHEWE T. 2000. Phospholipase A2s and lipid peroxidation. Biochimica et Biophysica Acta 1488:167–181.
  • POLITYCKA B. 1996. Peroxidase activity and lipid peroxidation in roots of cucumber seedlings influenced by derivativesof cinnamic and benzoic acids. Acta PhysiologiaePlantarum 4: 365–370.
  • POLITYCKA B, and BEDNARSKI W. 2004. Oxidative burst and lipoxygenase activity induced by hydroxycinnamic acidsin cucumber roots. Allelopathy Journal 14(2): 197–196.
  • PORTA H, and ROCHA-SOSA M. 2002. Plant lipoxygenases.Physiological and molecular features. PhysiologiaPlantarum 130: 15–21.
  • SIEDOW JN. 1991. Plant lipoxygenase: structure and function. Annual Review of Plant Physiology and Plant MolecularBiology 42: 145–188.
  • VAUGHAM D, and ORD BG. 1991. Extraction of potential allelochemicals and their effects on root morphology andnutrient contents. In: Atkinson D [ed.], Plant Root Growth. An Ecological Perspective, 399–421. Blackwell Scientific Publications, Oxford, U.K.
  • VICK BA, and ZIMMERMAN DC. 1987. The lipoxygenase pathway. In: Stumf PK and Nes WD [eds.], Metabolism, Functionand Structure of Plant Lipids, 383–390. New York,Plenum Press.
  • WANG XM, and HILDEBRAND DF. 1987. Effect of a substituted pyridazinone on the decrease of lipoxygenase activity in soybean cotyledons. Plant Science 51: 29–36.
  • ZENG RN, LUO SM, SHI YH, SHI MB, and TU CY. 2001. Physiological and biochemical mechanism of allelopathyof secalonic acid F on higher plants. Agronomy Journal93: 72–79.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-981b2c45-92a6-454f-9ba2-185383a06764
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.