PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 5 |

Tytuł artykułu

Cuticular wax load and surface wettability of leaves and fruits collected from sweet cherry (Prunus avium) trees grown under field conditions or inside a polytunnel

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this work, the effect of microclimate at the tree level inside a polytunnel and in an uncovered orchard of Prunus avium was studied through the observation of leaf and fruit micromorphology and the accumulation of cuticular waxes. Records of environmental parameters showed a significantly higher daytime temperature in the polytunnel (on an average 4°C), whereas the night temperature did not differ between treatments. Furthermore, photosynthetic active radiation and UV-B radiation inside the polytunnel were 43 and 97% lower, respectively, than the radiation measured outside. Leaves grown in the polytunnel had lower contact angles and higher load of cuticular wax per unit area, irrespective of cultivar. The impact of the microclimate was observed at the first sampling and did not increase with exposure time of leaves. Fruits of the cultivars ‘Souvenir’ and ‘Prime Giant’ grown outside had significantly less cuticular wax despite their delayed harvest time of 11 and 5 days, respectively. The relationship of higher cuticular wax load and lower contact angles of protected leaves might have practical importance for plant protection activities and the retention and uptake of leaf-applied agrochemicals.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

33

Numer

5

Opis fizyczny

p.1785-1792,fig.,ref.

Twórcy

autor
  • Institute of Crop Science and Resource Conservation, Horticultural Science, University of Bonn, Auf dem Hügel 6, 53121, Bonn, Germany
autor
  • Institute of Crop Science and Resource Conservation, Horticultural Science, University of Bonn, Auf dem Hügel 6, 53121, Bonn, Germany

Bibliografia

  • Baker AE (1974) The influence of environment on leaf wax development in Brassica oleracea var. Gemmifera. New Phytol 73:955–966
  • Baker EA, Hunt GM (1986) Erosion of waxes from leaf surfaces by simulated rain. New Phytol 102:161–173
  • Bargel H, Koch K, Cerman Z, Neinhuis C (2006) Evans review no. 3: structure–function relationships of the plant cuticle and cuticular waxes—a smart material? Funct Plant Biol 33:893–910
  • Barnes JD, Percy KE, Paul ND, Jones P, McLaughlin CK, Mullineaux PM, Creissen G, Wellburn AR (1996) The influence of UV-B radiation on the physicochemical nature of tobacco (Nicotiana tabacum L.) leaf surface. J Exp Bot 47:99–109
  • Beattie GA, Marcell LM (2002) Effect of alterations in cuticular wax biosynthesis on the physicochemical properties and topography of maize leaf surfaces. Plant Cell Environ 15:1–16
  • Bird S, Gray E (2003) Signals from the cuticle affect epidermal cell differentiation. New Phytol 157:9–23
  • Blanke MM (2008) Alternatives to reflect mulch cloth (ExtendayTM) for apple under hail net. Sci Hortic 116:223–226
  • Bondada BR, Oosterhuis DM, Kim KS, Murphy JB (1996) Effect of water stress on the epicuticular wax composition and ultrastructure of cotton (Gossypium hirsutum L.) leaf, bract and boll. Envrion Exp Bot 36:61–69
  • Bringe K, Hunsche M, Schmitz-Eiberger M, Noga G (2007) Retention and rainfastness of mancozeb as affected by physicochemical characteristics of adaxial apple leaf surface after enhanced UV-B radiation. J Environ Sci Heal B 42:133–141
  • Bukovac MJ, Flore JA, Baker EA (1979) Peach leaf surfaces: changes in wettability, retention, cuticular permeability, and epicuticular wax chemistry during expansion with special reference to spray application. J Am Soc Hortic Sci 104:611–617
  • Burghardt M, Riederer M (2006) Cuticular transpiration. In: Riederer M, Müller C (eds) Biology of the plant cuticle. Blackwell, Oxford, pp 292–311
  • Burkhardt J (2010) Hygroscopic particles on leaves: nutrients or desiccants? Ecol Monogr 80:369–399
  • Cape JN, Percy KE (1993) Environmental influences on the development of spruce needle cuticles. New Phytol 125:787–799
  • Carver TLW, Gurr SJ (2006) Filamentous fungi on plant surfaces. In: Riederer M, Müller C (eds) Biology of the plant cuticle. Blackwell, Oxford, pp 368–397
  • Dekova O, Blanke M (2007) Verfrühung von Süsskirschen im Folienhaus. Erwerbs-Obstbau 49:10–17
  • Fernández V, Eichert T (2009) Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization. Crit Rev Plant Sci 28:36–68
  • Good RJ (1992) Contact angle, wetting, and adhesion: a critical review. J Adhes Sci Technol 6:1269–1302
  • Hunsche M, Bringe K, Schmitz-Eiberger M, Noga G (2006) Leaf surface characteristics of apple seedlings, bean seedlings and kohlrabi plants and their impact on the retention and rainfastness of mancozeb. Pest Manag Sci 62:839–847
  • Hunsche M, Blanke M, Noga G (2010) Does the microclimate under hailnets influence micromorphological characteristics of apple leaves and cuticles? J Plant Physiol 167:974–980
  • Jeffree CE, Baker EA, Holloway PJ (1976) Origins of the fine structure of plant epicuticular waxes. In: Dickinson CH, Preece TF (eds) Microbiology of aerial plant surfaces. Academic Press, London, pp 119–158
  • Jetter R, Riederer M (1994) Epicuticular crystals of nonacosan-10-ol: in vitro reconstitution and factors influencing crystals habits. Planta 195:257–270
  • Jetter R, Kunst L, Samuels L (2006) Composition of plant cuticular waxes. In: Riederer M, Müller C (eds) Biology of the plant cuticle. Blackwell, Oxford, pp 145–181
  • Jurado O, Albacete A, Martinez-Ballesta MC, Carvajal M, Perez-Alfocea F, Dodd IC, Romero-Aranda MR (2009) Water relations of the tos1 tomato mutant at contrasting evaporative demand. Physiol Plant 137:36–43
  • Kasperbauer MJ, Wilkinson RE (1995) Mulch surface color affects accumulation of epicuticular wax on developing leaves. Photochem Photobiol 62:940–944
  • Koch K, Hartmann KD, Schreiber L, Barthlott W, Neinhuis C (2006) Influences of air humidity during the cultivation of plants on wax chemical composition, morphology and leaf surface wettability. Environ Exp Bot 56:1–9
  • Krämer T, Hunsche M, Noga G (2009) Cuticular calcium penetration is directly related to the area covered by calcium within the droplet spread area. Sci Hortic (Amsterdam) 120:201–206
  • Kunst L, Jetter R, Samuels AL (2006) Biosynthesis and transport of plant cuticular waxes. In: Riederer M, Müller C (eds) Biology of the plant cuticle. Blackwell, Oxford, pp 182–215
  • Müller C (2006) Plant-insect interactions on cuticular surfaces. In: Riederer M, Müller C (eds) Biology of the plant cuticle. Blackwell, Oxford, pp 398–422
  • Neinhuis C, Kock K, Barthlott W (2001) Movement and regeneration of epicuticular waxes through plant cuticles. Planta 213:427–434
  • Pathan AK, Bond J, Gaskin RE (2008) Sample preparation for scanning electron microscopy of plant surfaces—horses for courses. Micron 39:1049–1061
  • Peschel S, Franke R, Schreiber L, Knoche M (2007) Composition of the cuticle of developing sweet cherry fruit. Phytochemistry 68:1017–1025
  • Piagnani MC, Maffi D, Rossoni M, Chiozzotto R (2008) Morphological and physiological behaviour of sweet cherry ‘somaclone’ HS plants in field. Euphytica 160:165–173
  • Reed DW, Tukey HB Jr (1982) Light intensity and temperature effects on epicuticular wax morphology and internal cuticle ultrastructure of carnation and brussels sprouts leaf cuticles. J Am Soc Hortic Sci 107:417–420
  • Riederer M, Markstädter C (1996) Cuticular waxes: a critical assessment of current knowledge. In: Kerstiens G (ed) Plant cuticles: an integrated functional approach. BIOS Scientific Publishers Ltd., Oxford, pp 189–200
  • Riederer M, Müller C (2006) Biology of the plant cuticle. Blackwell, Oxford
  • Riederer M, Schneider G (1990) The effect of the environment on the permeability and composition of Citrus leaf cuticles. II. Composition of soluble cuticular lipids and correlation with transport properties. Planta 180:154–165
  • Riederer M, Schreiber L (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032
  • Samuels L, Kunst L, Jetter R (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol 59:683–707
  • Schreiber L, Skrabs M, Hartmann RD, Diamantopoulos P, Simanova E, Santrucek J (2001) Effect of humidity on water permeability of isolated cuticular membranes and leaf disks. Planta 214:274–282
  • Shepherd T, Griffiths DW (2006) The effects of stress on plant cuticular waxes. New Phytol 171:469–499
  • Silva Fernandes AM, Batt RF, Martin JT (1964) The cuticular waxes of apple leaves and fruits and the cuticles of pear fruits during growth. Annual Report of Long Ashton Research Station for 1963. pp 110–118
  • Steinmü ller D, Tevini M (1985) Action of ultraviolet radiation (UVB) upon cuticular waxes in some crop plants. Planta 164:557–564
  • Tevini M, Steinmüller D (1987) Influence of light, UV-B radiation, and herbicides on wax biosynthesis of cucumber seedlings. J Plant Physiol 131:111–121

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9796bfc3-fc9f-4c79-91bd-a44068f20db9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.