PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 3 |

Tytuł artykułu

Phenolic wastewater treatment via catalytic gasification

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Phenolic wastewater comes mainly from coking, gas, and petrochemical plants, and other industrial sectors, as well as petroleum cracking ethylene, synthetic phenol, poly Thalidomide fibers, organic pesticides, and the phenolic resin production process. Phenolic compounds are monitoring our priority persistent organic compounds, having already been included in the column of carcinogenic single ring aromatics. In this paper, catalytic supercritical water gasification was applied to treat the phenolic wastewater. The influence of alkali on the gasification of phenolic wastewater with NaOH as catalyst at 580ºC, 27MPa was investigated. The results showed that the NaOH addition increased H₂ fraction and gas yield. The reaction mechanism was analyzed.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

3

Opis fizyczny

p.1147-1151,fig.,ref.

Twórcy

autor
  • Department of Municipal Engineering, School of Urban Construction, University of South China, China
autor
  • Department of Municipal Engineering, School of Urban Construction, University of South China, China
autor
  • Department of Municipal Engineering, School of Urban Construction, University of South China, China
autor
  • Department of Municipal Engineering, School of Urban Construction, University of South China, China
autor
  • Department of Municipal Engineering, School of Urban Construction, University of South China, China

Bibliografia

  • 1. MOUSSAVI G., BARIKBIN B., MAHMOUDI M. The removal of high concentrations of phenol from saline wastewater using aerobic granular SBR. Chem. Eng. J., 158, 498, 2010.
  • 2. GUERRA R. Ecotoxicological and chemical evaluation of phenolic compounds in industrial effluents. Chemosphere, 44, 1737, 2001.
  • 3. WANG H., GUAN Q.Q., LI J.X., WANG T.H. Phenolic wastewater treatment by an electrocatalytic membrane reactor. Catal. Today, 236, 121, 2014.
  • 4. XU D.Y., YANG Z. Cross-linked tyrosinase aggregates for elimination of phenolic compounds from wastewater. Chemosphere, 92, 391, 2013.
  • 5. FAN C.Z., LU A.H., LI Y., WANG C.Q. Pretreatment of actual high-strength phenolic wastewater by manganese oxide method. Chem. Eng. J., 160, 20, 2010.
  • 6. ZHANG M.L., ZHI L., LI H.Z., LONG H.K., ZHAO W. Process integration of halogenation and oxidation for recovery and removal of phenols from high strength phenolic wastewater. Chem. Eng. J., 229, 99, 2013.
  • 7. RAMAKRISHNAN A., GUPTA S.K. Effect of COD/NO₃⁻-N ratio on the performance of a hybrid UASB reactor treating phenolic wastewater. Desalination, 232, 128, 2008.
  • 8. LU Y., YAN L.H., WANG Y., ZHOU S.F., FU J.J., ZHANG J.F. Biodegradation of phenolic compounds from coking wastewater by immobilized white rot fungus Phanerochaete chrysosporium. J. Hazard. Mater., 165, 1091, 2009.
  • 9. PRATARN W., PORNSIRI T., THANIT S., TAWATCHAI C., WIWUT T. Adsorption and Ozonation Kinetic Model for Phenolic Wastewater Treatment. Chinese J. Chem. Eng., 19, 76, 2011.
  • 10. HSIEN T.Y., LIN Y.H. Biodegradation of phenolic wastewater in a fixed biofilm reactor. Biochem. Eng. J., 27, 95, 2005.
  • 11. MOHAMMADZADEH J.S.S., KHOSHFETRAT A.B., KAYNEJAD M.A. Pilot Scale System for Removal of Phenol in Phenolic Wastewater of Olefin Plant. Process Saf. Environ., 82, 365, 2004.
  • 12. LIN S.H., WANG C.S. Treatment of high-strength phenolic wastewater by a new two-step method. J. Hazard. Mater., 90, 205, 2002.
  • 13. CHENG J., YU S.M., ZUO P. Horseradish peroxidase immobilized on aluminum-pillared interlayered clay for the catalytic oxidation of phenolic wastewater. Water Res., 40, 283, 2006.
  • 14. HUSSAIN A., KUMAR P., MEHROTRA I. Treatment of phenolic wastewater in UASB reactor: Effect of nitrogen and phosphorous. Bioresource Technol., 99, 8497, 2008.
  • 15. HUSSAIN A., KUMAR P., MEHROTRA I. Nitrogen biotransformation in anaerobic treatment of phenolic wastewater. Desalination, 250, 35, 2010.
  • 16. MARTINS R.C., ROSSI A.F., QUINTA-FERREIRA R.M. Fenton’s oxidation process for phenolic wastewater remediation and biodegradability enhancement. J. Hazard. Mater., 180, 716, 2010.
  • 17. DALAL S., GUPTA M.N. Treatment of phenolic wastewater by horseradish peroxidase immobilized by bioaffinity layering. Chemosphere, 67, 741, 2007.
  • 18. LEE I.G. Effect of metal addition to Ni/activated charcoal catalyst on gasification of glucose in supercritical water. Int. J. Hydrogen Energ., 36, 8869, 2011.
  • 19. DING N., AZARGOHAR R., DALAI A.K., KOZINSKI J.A. Catalytic gasification of glucose to H₂ in supercritical water. Fuel Process. Technol., 127, 33, 2014.
  • 20. REDDY S.N., NANDA S., DALAI A.K., KOZINSKI J.A. Supercritical water gasification of biomass for hydrogen production. Int. J. Hydrogen Energ, 39, 6912, 2014.
  • 21. LU Y.J., ZHU Y.M., LI S., ZHANG X.M., GUO L.J. Behavior of nickel catalysts in supercritical water gasification of glucose: Influence of support. Biomass Bioenerg., 67, 125, 2014.
  • 22. REDDY S.N., NANDA S., DALAI A.K., KOZINSKI J.A. Supercritical water gasification of biomass for hydrogen production. Int. J. Hydrogen Energ. 39, 6912, 2009.
  • 23. FANG Z., MINOWA T., FANG C., SMITH JR R.L., INOMATA H., KOZINSKI J.A. Catalytic hydrothermal gasification of cellulose and glucose. Int. J. Hydrogen Energ, 33, 981, 2008.
  • 24. JIN H., LV Y.J., GUO L.J., CAO C.Q., ZHANG X.M. Hydrogen production by partial oxidative gasification of biomass and its model compounds in supercritical water. Int. J. Hydrogen Energ, 35, 3001, 2010.
  • 25. ANTAL JR M.J., ALLEN S.G., SCHULMAN D., XU X. Biomass gasification in supercritical water. Industrial and Engineering Chemistry Research. 39, 4040, 2000.
  • 26. KRUSE A., HENNINGSEN T., SINAǦ A., PFEIFFER J. Biomass Gasification in Supercritical Water:  Influence of the Dry Matter Content and the Formation of Phenols. Ind. Eng. Chem. Res., 42, 3711, 2003.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-97343353-85a1-4030-8200-90d6cd0330ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.