PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 1 |

Tytuł artykułu

Temperature-dependent impact of 24-epibrassinolide on the fatty acid composition and sugar content in winter oilseed rape callus

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this experiment was to study the effect of 24-epibrassinolide (BR₂₇) on fatty acids composition and sugar content in winter oilseed rape callus cultured at 20 and 5°C. Studies have showed that BR₂₇ action is highly temperature-dependent. The increase in sugar content (sucrose, glucose and fructose) by BR₂₇ in concentration 100 nM was observed only in calli cultured at 20°C. At 5°C, quite the opposite effect of BR₂₇ action was observed; where cold increased the sugar content, BR₂₇ decreased it. BR₂₇ at 20°C had a similar effect on the fatty acid composition of phospholipids (PL) as the cold in the process of frost hardening of oilseed rape calli. BR₂₇ decreased the 16:0, 18:1 and 18:2 and increased the 18:3 fatty acid content. At 5°C, BR₂₇ (100 nM) generally did not influence the fatty acid composition of PL. In case of digalactosyl diacylglycerols and monogalactosyl diacylglycerols, the influence of BR₂₇ on the fatty acid composition is ambiguous but still depends on temperature.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

31

Numer

1

Opis fizyczny

p.71-79,fig.,ref.

Twórcy

autor
  • The Franciszek Gorki Institute of Plant Physiology, Polish Acedemy of Sciences, 21 Niezapominajek Street, 30-239 Krakow, Poland
autor
  • Department of Plant Physiology, Faculty of Agriculture, Agricultural University of Krakow, 3 Podluzna Street, 30-239 Krakow, Poland
  • The Franciszek Gorki Institute of Plant Physiology, Polish Acedemy of Sciences, 21 Niezapominajek Street, 30-239 Krakow, Poland
autor
  • The Franciszek Gorki Institute of Plant Physiology, Polish Acedemy of Sciences, 21 Niezapominajek Street, 30-239 Krakow, Poland
  • The Franciszek Gorki Institute of Plant Physiology, Polish Acedemy of Sciences, 21 Niezapominajek Street, 30-239 Krakow, Poland
autor
  • The Franciszek Gorki Institute of Plant Physiology, Polish Acedemy of Sciences, 21 Niezapominajek Street, 30-239 Krakow, Poland

Bibliografia

  • Bakht J, Bano A, Dominy P (2006) The role of abscisic acid and low temperature in chickpea (Cicer arietinum) cold tolerance: II. Effects on plasma membrane structure and function. J Exp Bot 57:3707–3715. doi:10.1093/jxb/erl120
  • Bishop GJ, Yokota T (2001) Plants steroid hormones, brassinosteroids: current highlights of molecular aspects on their synthesis/ metabolism, transport, perception and response. Plant Cell Physiol 42:114–120. doi:10.1093/pcp/pce018
  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917
  • Braun P, Wild A (1984) The influence of brassinosteroid on growth and parameters of photosynthesis of wheat and mustard plants. J Plant Physiol 116:189–196
  • Bredemeijer GMM, Esselink G (1995) Sugar metabolism in coldhardened Lolium perenne varieties. Plant Var Seeds 8:187–195
  • Dahse I, Sack H, Bernstein M, Petzold U, Müller E, Vorbrodt HM et al (1990) Effects of (22S, 23S)-homobrassinolide and related compounds on membrane potential and transport of egeria leaf cells. Plant Physiol 93:1268–1271
  • Dallaire S, Houde M, Gagné Y, Saini HS, Boileau S, Chevrier N et al (1994) ABA and low temperature induce freezing tolerance via distinct regulatory pathways in wheat. Plant Cell Physiol 35:1–9
  • Ehsanpour AA, Amini F (2003) Effect of salt and drought stress on acid phosphatase activities in alfalfa (Medicago sativa L.) explants under in vitro culture. Afr J Biotechnol 2:133–135
  • Eun JS, Kuraishi S, Sakurai N (1989) Changes in levels of auxin and abscisic acid and the evolution of ethylene in squash hypocotyls after treatment with brassinolide. Plant Cell Physiol 30(6):807–810
  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 225:497–509
  • Gaudinová A, S}ussenbeková H, Vojtěchová M, Kaminek M, Eder J, Kohout L (1995) Different effects of two brassinosteroids on growth, auxin and cytokinin content in tobacco callus tissue. Plant Growth Regul 17:121–126. doi:10.1007/BF00024171
  • Grindstaff KK, Fielding LA, Brodl MR (1996) Effect of gibberellin and heat shock on the lipid composition of endoplasmic reticulum in barley aleurone layers. Plant Physiol 110:571–581
  • Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD et al (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217. doi:10.1038/281216a0
  • Haubrick LL, Assmann SM (2006) Brassinosteroids and plant function: some clues, more puzzles. Plant Cell Environ 29:446–457. doi:10.1111/j.1365-3040.2005.01481.x
  • Hurry VM, Strand Å, Tobiaeson M, Gardeström P, Öquist G (1995) Cold hardening of spring and winter wheat and rape results in differential effects on growth, carbon metabolism, and carbohydrate content. Plant Physiol 109:697–706
  • Janeczko A (2000) The influence of selected steroids on plant physiological processes—especially on flowering induction. Doctor Theses, Agricultural University, Krakow, Poland
  • Janeczko A, Kościelniak J, Pilipowicz M, Szarek-Łukaszewska G, Skoczowski A (2005) Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica 43:293–298. doi:10.1007/s11099-005-0048-4
  • Janeczko A, Gullner G, Skoczowski A, Dubert F, Barna B (2007) Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. Biol Plant 51:355–358. doi:10.1007/s10535-007-0072-2
  • Johnson G, Williams JP (1989) Effect of growth temperature on the biosynthesis of chloroplastic galactosyldiacylglycerol molecular species in Brassica napus leaves. Plant Physiol 91:924–929
  • Johnson-Flanagan AM, Huiwen Z, Thiagarajah MR, Saini HS (1991) Role of abscisic acid in the induction of freezing tolerance in Brassica napus suspension-cultured cells. Plant Physiol 95:1044–1048
  • Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22:289–297. doi:10.1007/s00344-003-0058-z
  • Kubacka-Ze˛balska M, Kacperska A (1999) Low temperature-induced modifications of cell wall content and polysaccharide composition in leaves of winter oilseed rape (Brassica napus var. oleifera L.). Plant Sci 148:59–67. doi:10.1016/S0168-9452(99)00122-3
  • Kuiper PJC (1985) Environmental changes and lipid metabolism of higher plants. Physiol Plant 64:118–122. doi:10.1111/j.1399-3054.1985.tb01221.x
  • Kull U, Kühn B, Schweizer J, Weiser H (1978) Short-term effects of cytokinins on the lipid fatty acids of green leaves. Plant Cell Physiol 19:801–810
  • Lee SP, Chen THH (1993) Molecular cloning of abscisic acidresponsive messenger RNAs expressed during the induction of freezing tolerance in Bromegrass (Bromus inermis Leyss) suspension culture. Plant Physiol 101:1089–1096. doi:10.1104/pp.101.3.1089
  • Liu X, Huang B (2002) Cytokinin effects on creeping bentgrass response to heat stress. II. Leaf senescence and antioxidant metabolism. Crop Sci 42:466–472
  • Liu W, Hildebrand DF, Collins GB (1995) Auxin-regulated changes of fatty acid content and composition in soybean zygotic embryo cotyledons. Plant Sci 106:31–42. doi:10.1016/0168-9452 (95)04067-5
  • Lu Z, Huang M, Ge DP, Yang YH, Cai XN, Qin P et al (2003) Effect of brassinolide on callus growth and regeneration in Spartina patens (Poaceae). Plant Cell Tissue Organ Cult 73:87–89. doi: 10.1023/A:1022665210113
  • Mandava NB (1988) Plant growth-promoting brassinosteroids. Annu Rev Plant Physiol Plant Mol Biol 39:23–52. doi:10.1146/ annurev.pp.39.060188.000323
  • Mazliak P (1977) Glyco- and phospholipids of biomembranes in higher plants. In: Tevini M, Lichtenthaler HK (eds) Lipids and lipid polymers in higher plants, vol 3. Springer, Berlin, pp 48–72
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with plant tissue culture. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x
  • Núñez M, Siqueira WJ, Hernández M, Zullo MAT, Robaina C, Coll F (2004) Effect of spirostane analogues of brassinosteroids on callus formation and plant regeneration in lettuce (Lactuca sativa). Plant Cell Tissue Organ Cult 78:97–99. doi:10.1023/B: TICU.0000020400.79230.c7
  • Ono EO, Nakamura T, Machado SR, Rodrigues JD (2000) Application of brassinosteroid to Tabebuia alba (Bignoniaceae) plants. Rev Bras Fisiol Vegetal 12:187–194. doi:10.1590/S0103-31312000000300002
  • Pontis HG (1989) Fructans and cold stress. J Plant Physiol 134:148–150
  • Rapacz M, Dawid K (1999) An opportunity for fast and reliable evaluation of winter oilseed rape frost resistance using in vitro cultures. J Agron Crop Sci 182:193–198. doi:10.1046/j.1439-037x.1999.00282.x
  • Rivera CM, Penner D (1978) Rapid changes in soybean root membrane lipids with altered temperature. Phytochemistry 17:1269–1272. doi:10.1016/S0031-9422(00)94570-9
  • Robertson AJ, Ishikawa M, Gusta LV (1995) The effect of prolonged abscisic acid treatment on the growth, freezing tolerance and protein patterns of Bromus inermis (Leyss) cell suspensions cultured at either 3 degrees or 25 degrees C. J Plant Physiol 145:137–142
  • Ryyppö A, Vapaavuori EM, Rikala R, Sutinen ML (1994) Fatty acid composition of microsomal phospholipids and H⁺-ATP-ase activity in the roots of Scots pine seedlings grown at different root temperatures during flushing. J Exp Bot 45:1533–1539. doi: 10.1093/jxb/45.11.1533
  • Sasse JM (2003) Physiological actions of brassinosteroids: an update. J Plant Growth Regul 22:276–288. doi:10.1007/s00344-003-0062-3
  • Skoczowski A (1999) Influence of cold on selected physiological processes in plants especially on flowering induction. Monograph 8, Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
  • Skoczowski A, Filek M (1986) Cold induced-changes in lipids from hypocotyls of winter and spring rape. I. The lipid synthesis and fatty acids composition. Acta Physiol Plant 8:203–212
  • Skoczowski A, Filek M (1994) Changes in fatty acids composition in the subcellular fraction from hypocotyls of winter rape growing at 2°C and 20°C. Plant Sci 98:127–133. doi:10.1016/0168-9452 (94)90002-7
  • Vágújfalvi A, Kerepesi I, Galiba G, Tischner T, Sutka J (1999) Frost hardiness depending on carbohydrate changes during cold acclimation in wheat. Plant Sci 144:85–92. doi:10.1016/S0168-9452(99)00058-8
  • Vardhini BV, Rao SSR (1998) Effect of brassinosteroids on growth, metabolite content and yield of Arachis hypogaea. Phytochemistry 48:927–930. doi:10.1016/S0031-9422(97)00710-3
  • Willemot C (1979) Chemical modification of lipids during frost hardening of herbaceous species. In: Lyons JM, Graham D, Raison JK (eds) Low temperature stress in crop plants. Academic, New York, pp 411–430
  • Yamaryo Y, Kanai D, Awai K, Shimojima M, Masuda T, Shimada H et al (2003) Light and cytokinin play a co-operative role in MGDG synthesis in greening cucumber cotyledons. Plant Cell Physiol 44:844–855. doi:10.1093/pcp/pcg110
  • Yoshida S, Uemura M (1984) Protein and lipid composition of isolated plasma membranes from orchard grass (Dactylis glomerata L.) and changes during cold acclimation. Plant Physiol 75:31–37
  • Yoshida S, Uemura M (1990) Responses of the plasma membrane to cold acclimation and freezing stress. In: Larsson C, Moller IM (eds) The plasma membrane. Structure, function, and molecular biology. Springer, Berlin, pp 293–319
  • Yu JQ, Huang LF, Hu WH, Zhou YH, Mao WH, Ye SF et al (2004) A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot 55:1135–1143. doi:10.1093/jxb/erh124
  • Zhu B, Ryu SB, Li PH (1990) Effect of abscisic acid biosynthesis inhibitor on cold-induced hardiness in cultured plant cells. Plant Physiol 93(suppl 1):84
  • Zullo MAT, Kohout L (2004) Semisystematic nomenclature of brassinosteroids. Plant Growth Regul 42:15–28. doi:10.1023/B: GROW.0000014898.30414.33

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-96de2d4a-d175-4f9d-b395-b83cb31028f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.