PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2019 | 78 | 2 |

Tytuł artykułu

Blind mole rat (Spalax leucodon) masseter muscle: structure, homology, diversification and nomenclature

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: It is well known that rodents are defined by a unique masticatory apparatus. The present study describes the design and structure of the masseter muscle of the blind mole rat (Spalax leucodon). The blind mole rat, which emerged 5.3–3.4 million years ago during the Late Pliocene period, is a subterranean, hypoxia-tolerant and cancer-resistant rodent. Yet, despite these impressive characteristics, no information exists on their masticatory musculature. Materials and methods: Fifteen adult blind mole rats were used in this study. Dissections were performed to investigate the anatomical characteristics of the masseter muscle. Results: The muscle was comprised of three different parts: the superficial masseter, the deep masseter and the zygomaticomandibularis muscle. The superficial masseter originated from the facial fossa at the ventral side of the infraorbital foramen. The deep masseter was separated into anterior and posterior parts. The anterior part of the zygomaticomandibularis muscle arose from the snout and passed through the infraorbital foramen to connect on the mandible. Conclusions: The construction of the deep masseter and zygomaticomandibularis muscles were of the Myomorpha type. Further studies are needed to reveal features such as muscle biomechanics, muscle types. (Folia Morphol 2019; 78, 2: 419–424)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

78

Numer

2

Opis fizyczny

p.419–424,fig.,ref.

Twórcy

autor
  • Department of Anatomy, Faculty of Medicine, Kahramanmaras University, Kahramanmaras, Turkey
autor
  • Department of Anatomy, Faculty of Medicine, Kahramanmaras University, Kahramanmaras, Turkey
autor
  • Department of Anatomy, Faculty of Veterinary Medicine, Aksaray University, Aksaray, Turkey
autor
  • Department of Anatomy, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey

Bibliografia

  • 1. Baverstock H, Jeffery NS, Cobb SN. The morphology of the mouse masticatory musculature. J Anat. 2013; 223(1): 46–60, doi: 10.1111/joa.12059, indexed in Pubmed: 23692055.
  • 2. Brandt JK. BeitragezurnahernKenntniss der SaugethiereRusslands. Memoires de l’Acade´mieImpe´ riale des. Sciences de St Petersbourg. 1855; 69: 1–375.
  • 3. Bresin A, Bagge U, Kiliaridis S. Adaptation of normal and hypofunctional masseter muscle after bite-raising in growing rats. Eur J Oral Sci. 2000; 108(6): 493–503, doi: 10.1034/j.1600-0722.2000.00915.x, indexed in Pubmed: 11153924.
  • 4. Byrd KE. Mandibular movement and muscle activity during mastication in the guinea pig (Cavia porcellus). J Morphol. 1981; 170(2): 147–169, doi: 10.1002/jmor.1051700203, indexed in Pubmed: 7299825.
  • 5. Cox PG, Jeffery N. Reviewing the morphology of the jawclosing musculature in squirrels, rats, and guinea pigs with contrast-enhanced microCT. Anat Rec (Hoboken). 2011; 294(6): 915–928, doi: 10.1002/ar.21381, indexed in Pubmed: 21538924.
  • 6. Druzinsky RE, Doherty AH, De Vree FL. Mammalian masticatory muscles: homology, nomenclature, and diversification. Integr Comp Biol. 2011; 51(2): 224–234, doi: 10.1093/icb/icr067, indexed in Pubmed: 21742777.
  • 7. Druzinsky RE. Functional anatomy of incisal biting in Aplodontia rufa and sciuromorph rodents - part 1: masticatory muscles, skull shape and digging. Cells Tissues Organs. 2010; 191(6): 510–522, doi: 10.1159/000284931, indexed in Pubmed: 20160428.
  • 8. Edoute Y, Arieli R, Nevo E. Evidence for improved myocardial oxygen delivery and function during hypoxia in the mole rat. J Comp Physiol B. 1988; 158(5): 575–582, indexed in Pubmed: 3249020.
  • 9. Eroglu F. Çorum city Spalax Leucodon Nordmann. 1840 the caryiological and morphological analysis of Mammalia: Rodentia. Zonguldak Karaelmas University Science. 2006.
  • 10. Gorbunova V, Hine C, Tian X, et al. Cancer resistance in the blind mole rat is mediated by concerted necrotic cell death mechanism. Proc Natl Acad Sci U S A. 2012; 109(47): 19392–19396, doi: 10.1073/pnas.1217211109, indexed in Pubmed: 23129611.
  • 11. Greene EC. Anatomy the Rat. Transactions of the American PtvIosophicaI Society. Vol. XXVII, Hainer Publishing Company, New York and London. 1963.
  • 12. Hautier L, Saksiri S. Masticatory muscle architecture in the Laotian rock rat Laonastes aenigmamus (Mammalia, Rodentia): new insights into the evolution of hystricognathy. J Anat. 2009; 215(4): 401–410, doi: 10.1111/j.1469-7580.2009.01130.x, indexed in Pubmed: 19694873.
  • 13. Herring SW. Masticatory muscles and the skull: a comparative perspective. Arch Oral Biol. 2007; 52(4): 296–299, doi: 10.1016/j.archoralbio.2006.09.010, indexed in Pubmed: 17084804.
  • 14. Hiiemae K, Houston W. The structure and function of the jaw muscles in the rat (Rattus norvegicus L.). Zoological J Linnean Society. 1971; 50(1): 75–99, doi: 10.1111/j.1096-3642.1971.tb00752.x.
  • 15. Hill JE. Morphology of the pocket gopher mammalian genus thomomys. Univ Calif Publ Zool. 1937; 42: 1–171.
  • 16. Howell A. The saltatorial rodent dipodomys: the functional and comparative anatomy of its muscular and osseous systems. Proc Am Acad Arts Scien. 1932; 67(10): 377, doi: 10.2307/20022915.
  • 17. İlgun R, Yoldas A, Kuru N, et al. Macroscopic anatomy of the lower respiratory system in mole rats (Spalax leucodon). Anat Histol Embryol. 2014; 43(6): 474–481, doi: 10.1111/ahe.12098, indexed in Pubmed: 24450964.
  • 18. Kıvanc E. The geographic variations of Turkey Spalax. Ankara (Notes in Turkish. 1988: 72–88.
  • 19. Kleinschmidt T, Nevo E, Braunitzer G. The primary structure of the hemoglobin of the mole rat (Spalax ehrenbergi, rodentia, chromosome species 60). Hoppe Seylers Z Physiol Chem. 1984; 365(5): 531–537, indexed in Pubmed: 6469215.
  • 20. Klingener D. The Comparative Myology of Four Dipodoid Rodents: Genera Zapus, Napaeozapus, Sicista, and Jaculus. Front Cover, Museum of Zoology. University of Michigan. 1964.
  • 21. Malik A, Bicker A, Poetzsch G, et al. Hypoxia tolerance, longevity and cancer-resistance in the mole rat Spalax: a liver transcriptomics approach. Scientific Reports. 2017; 7(1), doi: 10.1038/s41598-017-13905-z.
  • 22. Miller G, Gidley J. Synopsis of the supergenerie groups of rodents. J Washington Acad Scien. 1918; 8: 431–448, doi: 10.5962/bhl.part.6490.
  • 23. Musser GG, Carleton MD. Suerfamily Muroidea. In: Wilson DE, Reeder DM (eds.). Mammal Secies of the World: a Taxonomic and Geograhic Reference. 3rd ed. Baltimore: Johns Hokins University Press. 2005: 894–1531.
  • 24. Nevo E. utionary theory and processes of active speciation and adaptive radiation in subterranean mole rats. Spalaxehrenbergisuperspecies in Israel Evol Biology. 1991; 25: 1–125.
  • 25. Norris RW, Zhou K, Zhou C, et al. The phylogenetic position of the zokors (Myospalacinae) and comments on the families of muroids (Rodentia). Mol Phylogenet Evol. 2004; 31(3): 972–978, doi: 10.1016/j.ympev.2003.10.020, indexed in Pubmed: 15120394.
  • 26. Odagiri N, Kubota K, Shibanai S. Density of muscle spindles in the jaw muscles of the Japanese flying squirrel and the guinea pig. Ann Anat. 1993; 175(3): 263–270, indexed in Pubmed: 8338226.
  • 27. Ozkan ZE. Macro-anatomical investigations on the skeletons of mole-rat (Spalax leucodon Nordmann). III. Skeleton axiale. Veterinarski Arhiv. 2077; 7(3): 281–289.
  • 28. Rinker GC. The comparative myology of the mammalian genera Sigmodon, Oryzomys, Neotoma, and Peromyscus (Cricetinae), with remarks on their intergeneric relationships. MiscPublMusZoolUniv Michigan. 1954; 83: 1–124.
  • 29. Satoh K. Mechanical advantage of area of origin for the external pterygoid muscle in two murid rodents,Apodemus speciosus andClethrionomys rufocanus. J Morphol. 1999; 240(1): 1–14, doi: 10.1002/(sici)1097-4687(199904)240:1<1::aidjmor1>3.0.co;2-d.
  • 30. Scapino RP. Biomechanics of Feeding in Carnivora. Chicago. Illinois: Dissertation, University of Illinois. 1968.
  • 31. Shams I, Aaron A, Eviatar N. Hypoxic stress tolerance of the blind subterrean mole rat. Laboratory of Animal Molecular Evolution. Institute of Evolution, University of Haifa, Mount Carmel, Haifa. 2004; 10(1): 9698–9703.
  • 32. Thorington R, Darrow K. Jaw muscles of Old World squirrels. J Morphol. 1996; 230(2): 145–165, doi: 10.1002/(sici)1097-4687(199611)230:2<145::aid-jmor3>3.0.co;2-g.
  • 33. Turnbull WD. Mammalian masticatory apparatus. Fieldiana Geol. 1970; 18(2): 147–356.
  • 34. Vianey-Liaud M. Possible evolutionary relationships among Eocene and Lower Oligocene rodents of Asia, Europe, and North America. In: Luckett E.W.P., Hartenberger E.J.L.(eds): Evolutionary Relationships among Rodents: A Multidisciplinary Analysis. Plenum Press NATO ASI. New York 1985.
  • 35. Warburton NM. Comparative jaw muscle anatomy in kangaroos, wallabies, and rat-kangaroos (marsupialia: macropodoidea). Anat Rec (Hoboken). 2009; 292(6): 875–884, doi: 10.1002/ar.20905, indexed in Pubmed: 19462457.
  • 36. Weijs W. Morphology of the muscles of mastication in the albino rat Rattusnorvegicus. Acta Morph Neerl-Scand. 1973; 11: 312–340.
  • 37. William PW, Sherri JH. Biomechanical analysis of mastication in the fossil rodent ischyromys and its bearing on the origin of sciuromorphs, Technical Report N.P. Service Paleontology Research. 1993; 2: 21.
  • 38. Wood AE. The evolution of Old World and New World hystricomorphs. In: Rowlands I.W, Weir B.J. (eds): The Biology of Hystricognath Rodents. Academic Press, SympZoolSoc London. 1974; 34: 21–60.
  • 39. Woods CA, Howland EB. Adaptive Radiation of Capromyid Rodents: Anatomy of the Masticatory Apparatus. J Mammal. 1979; 60(1): 95–116, doi: 10.2307/1379762.
  • 40. Woods CA. Comparative myology of jaw, hyoid, and pectoral appendicular regions of new and old world hystricomorph rodents. Bull Am Mus Nat Hist. 1972; 147: 115–198.
  • 41. Yalcın H, Arslan A, Tıpırdamaz S. Macro-anatomical investigations on the masticatory muscles of tree squirrel. Vet. Bilimleri, Dergisi 2003; 19. ; 3(4): 83–88.
  • 42. Zanjani ED, Poster J, Burlington H, et al. Liver as the primary site of erythropoietin formation in the fetus. J Lab Clin Med. 1977; 89(3): 640–644, indexed in Pubmed: 839121.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-96c6b379-e585-4fd7-8b4c-15b5957a40df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.