EN
Purple-fleshed sweet potato (Ipomoea batatas (L.) Lam) accumulates a large amount of anthocyanins in its tubers. Activation of anthocyanin gene expression requires transcription factors such as MYB domain, basic helix-loop-helix domain, or WD40-repeat domain-containing proteins. However, the mechanisms controlling pigmentation in underground organs remain unresolved. We used a principal component analysis to identify the most important gene in anthocyanin biosynthesis in pigmented sweet potato tubers, because this gene was the most likely to be regulated by IbMYB1. Anthocyanidin synthase was identified as the most important gene. Functional analysis of its promoter identified four MYB DNA-binding sites. In gel mobility shift experiments with recombinant IbMYB1, the IbMYB1 protein bound specifically to TAACCG box and TATCC box motifs in vitro. We conducted transient expression experiments in which various promoter fragments were used to drive expression of the LUC reporter gene. The reporter gene was strongly expressed under the control of the full-length promoter, but weakly expressed under the control of promoter fragments that lacked the MYB DNA-binding domains. This provided direct evidence that IbMYB1 activates the expression of this structural anthocyanin gene. Together, these results show that IbMYB1 is important in controlling the expression of genes in the anthocyanin biosynthetic pathway in cells.