PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 62 | 4 |

Tytuł artykułu

The effect of nanosilver on pigments production by Fusarium culmorum (W.G.Sm.) Sacc.

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A disk-diffusion method experiment assessed the impact of nanosilver on production of secondary metabolites (pigments) by the Fusarium culmorum fungus. Nanosilver colloidal particles in water have been obtained by the use of a method based on high voltage electric arcs between silver electrodes. The silver nanoparticles size in colloid ranged between 15 and 100 nm and 7, 35 and 70ppm concentration. Nanosilver modifies the metabolism of the researched F. culmorum strain. Coming into contact with nanosilver colloids induces more intensive mycelia pigmentation correlated with nanosilver concentration levels. The performed analysis of metabolites indicates that under the influence of nanosilver fungi biosynthesise aurofusarin more intensively and the conversion of rubrofusarin to aurofusarin is intensified as compared to the control culture. Under the influence of nanosilver F. culmorum intensively biosynthesises an unidentified dye which shares structural features with aurofusarin but which is not produced by fungi in standard cultures.

Wydawca

-

Rocznik

Tom

62

Numer

4

Opis fizyczny

p.365-372,fig.,ref.

Twórcy

  • Department of Chemistry and Physics, University of Agriculture in Krakow, Mickiewicza 21, 31-120 Krakow, Poland
autor
  • Department of Agricultural Environmental Protection, University of Agriculture in Krakow, Krakow, Poland
  • Eukaryotic Molecular Cell Biology Group, Department of Systems Biology, Technical University of Denmark, Kgs.Lyngby DK 2800, Denmark

Bibliografia

  • Ahmed M., M.S. Alsalhi and M.K. Siddiqui. 2010. Silver nanoparticle applications and human health. Clin. Chim. Acta 411:1841-1848.
  • Asharani P.V., M.P. Hande and S. Valiyaveettil. 2009. Anti-pro-liferative activity of silver nanoparticles. BMC Cell. Biol. 17: 10-65.
  • Bottalico A. and G. Perrone. 2002. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur. J. Plant. Pathol. 108: 611-624.
  • Chełkowski J. (eds). 1989. Fusarium: Mycotoxins, Taxonomy and Pathogenicity. Elsevier, Amsterdam, D.C.
  • Cornforth J.W., G. Ryback, P.M. Robinson and D. Park. 1971. Isolation and characterization of a fungal vacuolation factor (bikaverin). J. Chem. Soc: 2786-2788.
  • Dastjerdi R., R. Montazer and S. Shahsavan. 2009. A new method to stabilize nanoparticles on textile surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspect 345 (1-3): 202-210.
  • Desjardins A.E. 2006. Fusarium mycotoxins: chemistry, genetics and biology. APS Press, St. Paul, MN, USA, D.C.
  • Eisaku M., T. Tadahiro and S. Shoji. 1968. Metabolic Products of Fungi XXIX. The Structure of Aurofusarin. Chemical & Pharmaceutical Bulletin 16 (3): 411-413.
  • Eom H.J.and J. Choi. 2010. p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ. Sci. Technol. 44: 8337-8342.
  • Faunce T. and A. Watal. 2010. Nanosilver and global public health: International regulatory issues. Nanomedicine 5: 617-632.
  • Foldbjerg R., P. Olesen, M. Hougaard, D.A. Dang, H.J. Hoffmann and H. Autrup. 2009. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol. Lett. 190: 156-162.
  • Frandsen R.J, C. Schütt, B.W. Lund, D. Staerk, J. Nielsen, S. Olsson and H. Giese. 2011. Two novel classes of enzymes are required for the biosynthesis of aurofusarin in Fusarium graminearum. J. Biol. Chem.286: 10419-28.
  • Frandsen R.J.N., N.J. Nielsen, N. Maolanon, J.J.C. Sorensen, S. Olsson, J. Nielsen and H. Giese. 2006. The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones. Molecular Microbiology 61: 1069-1080.
  • Gajbhiye M., J. Kesharwani, A. Ingle, A. Gade and M. Rai. 2009. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine: Nanotechnology, Biology, and Medicine 5: 382-386.
  • Gill M., A. Gimenez, A.G. Jhingran and A.R. Palfreyman. 1990. A degradative method for the determination of central chirality in naturally occurring 3-hydroxy-3-methyl-3,4-dihydroanthracen-l(2H)ones. Tetrahedron Letters 31: 1203-1206.
  • Holt K.B. and A.J. Bard. 2005. Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44: 13214-13223.
  • Hussain S.M., K.L. Hess, J.M. Gearhart, K.T. Geiss and J.J. Schlager. 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19: 975-983.
  • Ivask A., O. Bondarenko, N. Jepihhina and A. Kahru. 2010. Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO₂, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Anal. Bioanal. Chem. 398: 701-16.
  • Jackowiak H., D. Packa, M. Wiwat and J. Perkowski. 2005. Scanning electron microscopy of Fusarium damaged kernels of spring wheat. International Journal of Food Microbiology 98: 113-123.
  • Kang Z. and H. Buchenauer. 2002. Studies on the infection process of Fusarium culmorum in wheat spikes: degradation of host cell wall components and localization of trichothecene toxins in infected tissue. European Journal of Plant Pathology 108: 653-660.
  • Kasprowicz M.J., M. Kozioł and A. Gorczyca. 2010. The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can. J. Microbiol. 56: 247-253.
  • Keuk-Jun K., W. Sang Sung, S.K. Moon, J.S. Choi, J.G. Kim and D.G. Lee. 2008. Antifungal Effect of Silver Nanoparticles on Dermatophytes. J. Microbiol. Biotechnol. 18: 1482-1484.
  • Kim J.S., E. Kuk, K.N. Yu, J. Kim, S.J. Park, HJ. Lee, S.H. Kim, Y.K. Park, C. Hwang, Y. Kim and others. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine 3: 95-101.
  • Kim S.W., K.S. Kim, K. Lamsal, Y.J. Kim, S.B. Kim, M. Jung, S.J. Sim, H.S. Kim, S.J. Chang, J.K. Kim and Y.S. Lee. 2009. An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J. Microbiol. Biotechnol. 19: 760-764.
  • Kim T-H., M. Kim, H.S. Park, U.S. Shin, M.S. Gong and H. W. Kim. 2012. Size-dependent cellular toxicity of silver nanoparticles. J. Biomed. Mater. Res. Part. A 100 A: 1033-1043.
  • Kjaer D., A. Kjaer, C. Pedersen, J.D. Bu'lock and J.R. Smith. 1971. Bikaverin and norbikaverin, benzoxanthentrione pigments of Gibberella fujikuroi. J. Chem. Soc. 2792-2797.
  • Kwaśna H. and J. Chełkowski. 1991. Ecology and taxonomy of Fusarium species in Poland. Mycotoxin Research 7: 58-63.
  • Kwaśna H., J. Chełkowski and P. Zajkowski. 1991. Grzyby (Mycota). PAN, Warszawa-Krakow. 23: 82-84.
  • Lee D., R.E. Cohen and M.F. Rubner. 2005. Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir 21: 9651-9659.
  • Leslie J.F., B.A. Summerell and S. Bullock. 2006. The Fusarium Laboratory Manual. Blackwell Publishing. Ames, IA, USA, D.C.
  • Lewinski N., V. Colvin and R. Drezedk. 2008. Cytotoxicity of nanoparticles. Small 4: 26-49.
  • Linnemannstöns P., J. Schulte, M. del Mar Prado, R.H. Proctor, J. Avalos and B. Tudzynski. 2002. The polyketide synthase gene pks4 from Gibberella fujikuroi encodes a key enzyme in the biosynthesis of the red pigment bikaverin. Fungal. Genet. Biol. 37: 134-148.
  • Logrieco A., G. Mule, A. Moretti and A. Bottalico. 2002. Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. Eur. J. Plant Pathol. 108: 597-609.
  • Malz S., M.N. Grell, Ch. Thrane, F.J. Maier, P. Rosager, A. Felk, K.S. Albertsen, S. Salomon, L. Bohn, W. Schäfer and H. Giese. 2005. Identification of a gene cluster responsible for the biosynthesis of aurofusarin in the Fusarium graminearum species complex. Fungal Genetics and Biology 42: 420-433.
  • Margaret LP., S.L. Lui, V.K. Poon, I. Lung and A. Burd. 2006. Antimicrobial activities of silver dressings: An in vitro comparison. J. Med. Microbiol. 55: 59-63.
  • Marini M., N. De Niederhausern, R. Iseppi, M. Bondi, C. Sabia, M. Toselli and F. Pilati. 2007. Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes. Biomacromolecules 8: 1246-1254.
  • Martinez-Castanon G.A., N. Nino-Martinez, F. Martinez-Gutierrez and J.R. Martinez-Mendoza. 2008. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanopart. Res. 10: 1343-1348.
  • Medentsev A.G. and V.K. Akimenko. 1998. Naphthoquinone metabolites of the fungi. Phytochemistry 47: 935-959.
  • Medentsev A.G., A.Y. Arinbasarova and V.K. Akimenko. 2005. Biosynthesis of Naphthoquinone Pigments by Fungi of the Genus Fusarium. Applied Biochemistry and Microbiology 41: 503-507.
  • Miura N. and Y. Shinohara. 2009. Cytotoxic effects and apoptosis induction by silver nanoparticles in Hela cells. Biochem Biophys Res Commun 390: 733-737.
  • Morones J.R., J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramirez and J. Yacaman. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346-2353.
  • Pal S., Y.K. Tak and J.M. Song. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73: 1712-1720.
  • Panacek A., L. Kvitek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V.K. Sharma, N. Tatjana and Z. Zboril. 2006. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B 110: 16248-16243.
  • Parisot D., M. Devys and M. Barbier. 1990. Naphthoquinone pigments related to fusarubin from the fungus Fusarium solani (Mart.) Sacc. Microbios. 64 (258): 31-47.
  • Parry D.W., P. Jenkinson and L. McLeod. 1995. Fusarium ear blight (scab) in small grain cereals-a review. Plant. Pathol 44: 207-238.
  • Petica A., S. Gavriliu, M. Lungu, N. Buruntea and C. Panzaru. 2008. Colloidal silver solutions with antimicrobial properties. Materials Science and Engineering B 152: 22-27.
  • Pirgozliev S.R., S.G. Edwards, M.C. Hare and P. Jenkinson. 2003. Strategies for the control of Fusarium head blight in cereals. Eur. J. Plant Pathol. 109: 731-742.
  • Pradeep T. and S. Anshup. 2009. Noble metal nanoparticles for water purification: A critical review. Special Feature. Thin. Solid. Films. 517: 6441-6478.
  • Rep M. and H.C. Kistler. 2010. The genomic organization of plant pathogenicity in Fusarium species. Current Opinion in Plant Biology 13: 420-426.
  • Rujitanaroja P., N. Pimphab and P. Supaphol. 2008. Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 49: 4723-4732.
  • Samberg M.E., S.J. Oldenburg and N.A. Monteiro-Riviere. 2010. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ. Health. Perspect. 118: 407-413.
  • Schaafsma A.W, L. Tamburic-Ilincic, J.D. Miller and D.C Hooker. 2001. Agronomic considerations for reducing deoxynivalenol in wheat grain. Can. J. Plant Pathol. 23: 279-285.
  • Shoji S., M. Eisaku and A. Yasuo. 1967. Metabolic Products of Fungi. XXV. Synthesis of Rubrofusarin and Its Derivatives. Chemical & Pharmaceutical Bulletin 15: 1757-1764.
  • Shrivastava S., T. Bera, A. Roy, G. Singh, P. Ramachandrarao and D. Dash. 2007. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18: 225103 9pp.
  • Smedsgaard J. 1997. Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures. J. Chromatogr. A. 31760: 264-270.
  • Snijders C.H.A. 2004. Resistance in wheat to Fusarium infection and trichothecene formation. Toxicology Letters 153: 37-46.
  • Tankhiwale R. and S.K. Bajpai. 2009. Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food packaging. Coloids and Surfaces B: Biointerfaces 69: 164-168.
  • Tien D.C, K.H. Tseng, CY. Liao and T.T. Tsung. 2008. Colloidal silver fabrication using the spark discharge system and its antimicrobial effect on Staphylococcus aureus. Medical Engineering & Physics 30: 948-52.
  • Yang Z., Z.W. Liu, R.P. Allaker, P. Reip, J. Oxford, Z. Ahmad and G. Ren. 2010. A review of nanoparticle functionality and toxicity on the central nervous system. J. R. Soc. Interface 7: 411-422.
  • Yen H.J., S.H. Hsu and CL. Tsai. 2009. Cytotoxicity and immunological responses of gold and silver nanoparticles of different sizes. Small 5: 1553-1561.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9413826e-2840-46c1-9b79-d4abfa626d82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.