PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 86 | 1 |

Tytuł artykułu

Ethylene-dependent effects on generative organ abscission of Lupinus luteus

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The abscission of certain organs from the plant is part of the fulfilment of its developmental programs. The separation process occurs in a specialized abscission zone usually formed at the base of detached organ. The changing level of phytohormones, particularly ethylene, is the element responsible for coordinating anatomical and physiological transformation that accompanies organ abscission. The application of ethylene (ET) on Lupinus luteus stimulates flower abortion. However, the treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) – direct ET precursor – does not cause such a strong physiological response. In turn, when applied on the pedicels both ET biosynthesis (2-aminoethoxyvinylglycine; AVG) and action (norbornadiene; NBD) inhibitors reversed the stimulatory effect of ET on generative organ separation. In order to determine ET role in the flower abscission process in L. luteus, we identified the sequences coding for synthase (LlACS) and oxidase (LlACO) of ACC and measured their expression levels. Abscission zone activation is accompanied by a considerable increase both in LlACS and LlACO cDNAs and also ACC content, which is specifically localized in the dividing cells at the base of the flower being detached. Obtained results suggest that ET is a strong stimulator of flower abortion in L. luteus.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

86

Numer

1

Opis fizyczny

Article 3540 [11p.],fig.,ref.

Twórcy

  • Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland
autor
  • Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland
  • Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland
  • Department of Biochemistry, Cellular and Molecular Biology of Plants, Estacion Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain
  • Department of Biochemistry, Cellular and Molecular Biology of Plants, Estacion Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain
  • Department of Cell Biology, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland
  • Department of Biochemistry, Cellular and Molecular Biology of Plants, Estacion Experimental del Zaidin, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain
autor
  • Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland
autor
  • Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland
  • Center for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland

Bibliografia

  • 1. Frankowski K, Wilmowicz E, Kućko A, Mączkowski R, Marciniak K, Kopcewicz J. The generative development of traditional and self-completing (restricted branching) cultivars of white lupine (Lupinus albus L.), yellow lupine (L. luteus L.) and narrow-leafed lupine (L. angustifolius L.) grown under different phytotron conditions. Plant Breeding and Seed Science. 2014;69:47–57. https://doi.org/10.1515/plass-2015-0005
  • 2. Prusiński J, Borowska M. Degree of success of legume cultivars registered by the center for cultivar testing over the period of market economy. Acta Scientiarum Polonorum. Agricultura. 2001;6:3–16.
  • 3. Estornell LH, Agustí J, Merelo P, Talón M, Tadeo FR. Elucidating mechanisms underlying organ abscission. Plant Sci. 2013;199–200:48–60. https://doi.org/10.1016/j.plantsci.2012.10.008
  • 4. Taylor JE, Whitelaw CA. Signals in abscission. New Phytol. 2001;151:323–339. https://doi.org/10.1046/j.0028-646x.2001.00194.x
  • 5. Roberts JA, Whitelaw CA, Gonzalez-Carranza ZH, McManus MT. Cell separation processes in plants – models, mechanisms and manipulation. Ann Bot. 2000;86(2):223–235. https://doi.org/10.1006/anbo.2000.1203
  • 6. van Doorn WG. Effect of ethylene of flower abscission: a survey. Ann Bot. 2002;89(6):689–693. https://doi.org/10.1093/aob/mcf124
  • 7. Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol. 1984;35:155–189. https://doi.org/10.1146/annurev.pp.35.060184.001103
  • 8. Kęsy J, Frankowski K, Wilmowicz E, Glazińska P, Wojciechowski W, Kopcewicz J. The possible role of PnACS2 in IAA-mediated flower inhibition in Pharbitis nil. Plant Growth Regul. 2010;61(1):1–10. https://doi.org/10.1007/s10725-010-9443-3
  • 9. Sawicki M, Barka EA, Clément C, Vaillant-Gaveau N, Jacquard C. Cross-talk between environmental stresses and plant metabolism during reproductive organ abscission. J Exp Bot. 2015;66:1707–719. https://doi.org/10.1093/jxb/eru533
  • 10. Wilmowicz E, Frankowski K, Kęsy J, Glazińska P, Wojciechowski W, Kućko A, et al. The role of PnACO1 in light- and IAA-regulated flower inhibition in Pharbitis nil. Acta Physiol Plant. 2013;35(3):801–810. https://doi.org/10.1007/s11738-012-1121-9
  • 11. Wilmowicz E, Frankowski K, Kęsy J, Kućko A, Kopcewicz J. Involvement of the IAA-regulated ACC oxidase gene PnACO3 in Pharbitis nil flower inhibition. Acta Biol Crac Ser Bot. 2014;56(1):90–96. https://doi.org/10.2478/abcsb-2014-0013
  • 12. Argueso CT, Hansen M, Kieber JJ. Regulation of ethylene biosynthesis. J Plant Growth Regul. 2007;26(2):92–105. https://doi.org/10.1007/s00344-007-0013-5
  • 13. Belfield EJ, Ruperti B, Roberts JA, McQueen-Mason S. Changes in expansin activity and gene expression during ethylene-promoted leaflet abscission in Sambucus nigra. J Exp Bot. 2005;56(413):817–823. https://doi.org/10.1093/jxb/eri076
  • 14. Frankowski K, Wilmowicz E, Kućko A, Zienkiewicz A, Zienkiewicz K, Kopcewicz J. Molecular cloning of BLADE-ON PETIOLE gene and expression analyses during nodule development in Lupinus luteus. J Plant Physiol. 2015;179:35–39. https://doi.org/10.1016/j.jplph.2015.01.019
  • 15. Frankowski K, Wilmowicz E, Kućko A, Zienkiewicz A, Zienkiewicz K, Kopcewicz J. Profiling the BLADE-ON-PETIOLE gene expression in the abscission zone of generative organs in Lupinus luteus. Acta Physiol Plant. 2015;37:220. https://doi.org/10.1007/s11738-015-1972-y
  • 16. Kęsy J, Maciejewska B, Sowa M, Szumilak M, Kawałowski K, Borzuchowska M, et al. Ethylene and IAA interactions in the inhibition of photoperiodic flower induction of Pharbitis nil. Plant Growth Regul. 2008;55:43–50. https://doi.org/10.1007/s10725-008-9256-9
  • 17. Yip WK, Dong JG, Kenny JW, Thompson GA, Yang SF. Characterization and sequencing of the active site of 1-aminocyclopropane-1-carboxylate synthase. Proc Natl Acad Sci USA 1990;87(20):7930–7934. https://doi.org/10.1073/pnas.87.20.7930
  • 18. Huang PL, Parks JE, Rottmann WE, Theologis A. Two genes encoding 1-aminocyclopropane-1-carboxylate synthase in zucchini (Cucurbita pepo) are clustered and similar but differentially regulated. Proc Natl Acad Sci USA 1991;88(16):7021–7025. https://doi.org/10.1073/pnas.88.16.7021
  • 19. Rottmann WH, Peter GF, Oeller PW, Keller JA, Shen NF, Nagy BP, et al. 1-Aminocyclopropane-1-carboxylate synthase in tomato is encoded by multigene family whose transcription is induced during fruit and floral senescence. J Mol Biol. 1991;222(4):937–961. https://doi.org/10.1016/0022-2836(91)90587-V
  • 20. Yoo A, Seo YS, Jung JW, Sung SK, Kim WT, Lee W, et al. Lys296 and Arg299 residues in the C-terminus of MD-ACO1 are essential for a 1-aminocyclopropane-1-carboxylate oxidase enzyme activity. J Struct Biol. 2006;156(3):407–420. https://doi.org/10.1016/j.jsb.2006.08.012
  • 21. Bleecker AB, Patterson SE. Last exit: senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell. 1997;9(7):1169–1179. https://doi.org/10.1105/tpc.9.7.1169
  • 22. Butenko MA, Patterson SE, Grini PE, Stenvik GE, Amundsen SS, Mandal A, et al. INFLORESCENCE DEFICIENT IN ABSCISSION controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell. 2003;15(10):2296–2307. https://doi.org/10.1105/tpc.014365
  • 23. Pandita VK, Jindal KK. Enzymatic and anatomical changes in abscission zone cells of apple fruits induced by ethephon. Biol Plant. 1991;33(1):20–25. https://doi.org/10.1007/BF02873782
  • 24. Gómez-Cadenas A, Mehouachi J, Tadeo FR, Primo-Millo E, Talon M. Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. Planta. 2000;210(4):636–643. https://doi.org/10.1007/s004250050054
  • 25. Clark DG, Richards C, Hilioti Z, Lind-Iversen S, Brown K. Effect of pollination on accumulation of ACC synthase and ACC oxidase transcripts, ethylene production and flower petal abscission in geranium (Pelargonium × hortorum L.H. Bailey). Plant Mol Biol. 1997;34(6):855–865. https://doi.org/10.1023/A:1005877809905
  • 26. Tudela D, Primo-Millo E. 1-Aminocyclopropane-1-carboxylic acid transported from roots to shoots promotes leaf abscission in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings rehydrated after water stress. Plant Physiol. 1992;100(1):131–137. https://doi.org/10.1104/pp.100.1.131
  • 27. Roberts JA, Elliot KA, Gonzalez-Carranza ZH. Abscission, dehiscence and other cell separation processes. Ann Rev Plant Biol. 2002;53:131–158. https://doi.org/10.1146/annurev.arplant.53.092701.180236
  • 28. Sexton R, Roberts JA. Cell biology of abscission. Ann Rev Plant Physiol. 1982;33:133–162. https://doi.org/10.1146/annurev.pp.33.060182.001025
  • 29. Kende H. Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol. 1993;44:283–307. https://doi.org/10.1146/annurev.pp.44.060193.001435
  • 30. Ralph SG, Hudgins JW, Jancsik S, Franceschi VR, Bohlmann J. Aminocyclopropane carboxylic acid synthase is a regulated step in ethylene-dependent induced conifer defense. Full-length cDNA cloning of a multigene family, differential constitutive, and wound- and insect-induced expression, and cellular and subcellular localization in spruce and Douglas fir. Plant Physiol. 2007;143(1):410–424. https://doi.org/10.1104/pp.106.089425
  • 31. Takahashi H, Iwasa T, Shinkawa T, Kawahara A, Kurusu T, Inoue Y. Isolation and characterization of the ACC synthase genes from lettuce (Lactuca sativa L.), and the involvement in low pH-induced root hair initiation. Plant Cell Physiol. 2003;44(1):62–69. https://doi.org/10.1093/pcp/pcg008
  • 32. Yamagami T, Tsuchisaka A, Yamada K, Haddon WF, Harden LA, Theologis A. Biochemical diversity among the 1-aminocyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem. 2003;278(49):49102–49112. https://doi.org/10.1074/jbc.M308297200
  • 33. McCarthy DL, Capitani G, Feng L, Gruetter MG, Kirsch JF. Glutamate 47 in 1-aminocyclopropane-1-carboxylate synthase is a major specificity determinant. Biochemistry. 2001;40(41):12276–12284. https://doi.org/10.1021/bi011050z
  • 34. Tatsuki M, Mori H. Phosphorylation of tomato 1-aminocyclopropane-1-carboxylic acid synthase, LE-ACS2, at the C-terminal region. J Biol Chem. 2001;276(30):28051–28057. https://doi.org/10.1074/jbc.M101543200
  • 35. Burdon JN, Sexton R. Ethylene co-ordinates petal abscission in red raspberry (Rubus idaeus L.) flowers. Ann Bot. 1993;72(4):289–294. https://doi.org/10.1006/anbo.1993.1110
  • 36. Stead AD, Moore KG. Studies on flower longevity in Digitalis: pollination induced corolla abscission in Digitalis flowers. Planta. 1979;146(4):409–414. https://doi.org/10.1007/BF00380853
  • 37. Israeli Y, Blumenfeld A. Ethylene production by banana flowers. HortScience. 1980;15:187–189.
  • 38. Mayak S, Halevy AH, Katz M. Correlative changes in phytohormones in relation to senescence processes in rose petals. Physiol Plant. 1972;27(1):1–4. https://doi.org/10.1111/j.1399-3054.1972.tb01127.x
  • 39. Wallner S, Kassalen R, Burgoon J, Craig R. Pollination, ethylene production and shattering in geraniums. HortScience. 1979;14:446.
  • 40. Deneke CF, Evensen KB, Craig R. Regulation of petal abscission in Pelargonium × domesticum. HortScience. 1990;25(8):937–940.
  • 41. Botton A, Eccher G, Forcato C, Ferrarini A, Begheldo M, Zermiani M, et al. Signaling path-ways mediating the induction of apple fruitlet abscission. Plant Physiol. 2011;155(1):185–208. https://doi.org/10.1104/pp.110.165779
  • 42. Dal Cin V, Boschetti A, Dorigoni A, Ramina A. Benzylaminopurine appli-cation on two different apple cultivars (Malus domestica) displays new and unexpected fruitlet abscission features. Ann Bot. 2007;99(6):1195–1202. https://doi.org/10.1093/aob/mcm062
  • 43. Nakano T, Fujisawa M, Shima Y, Ito Y. Expression profiling of tomato pre-abscission pedicels provides insights into abscission zone properties including competence to respond to abscission signals. BMC Plant Biol. 2013;13:40. https://doi.org/10.1186/1471-2229-13-40
  • 44. Schnurr J, Shockey J, Browse J. The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell. 2004;16(3):629–642. https://doi.org/10.1105/tpc.017608
  • 45. Jackson MB, Morrow IB, Osborne DJ. Abscission and dehiscence in the squirting cucumber, Ecballium elaterium: regulation by ethylene. Can J Bot. 1972;50(7):1465–1471. https://doi.org/10.1139/b72-179
  • 46. Roberts JA, Schindler CB, Tucker GA. Ethylene-promoted tomato flower abscission and the possible involvement of an inhibitor. Planta. 1984;160(2):159–163. https://doi.org/10.1007/BF00392864

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9189a2a7-2a32-4e98-8ddf-4a40e8bc3f62
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.