PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 19 | 1 |

Tytuł artykułu

The dynamics of Mediterranean Horseshoe bat (Rhinolophus euryale, Chiroptera) gut microflora during hibernation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Hibernation is an extraordinary phenomenon evolved in many animals including some mammals, allowing them to survive unfavorable environmental conditions. This period represents a phase of fasting, which is known to affect the gut microflora in nonhibernating mammals. Since during hibernation the physiological parameters (e.g., body temperature) differ from values in nonhibernating individuals, the food starvation is not the only parameter affecting the gut microflora. However, little is known about gut microflora in hibernating mammals. This study is focused on the examination of the gut microflora of Mediterranean horseshoe bat (Rhinolophus euryale) during hibernation. Faecal samples were collected during the winter from November 2014 to March 2015 and subsequently subjected to cultivation, non-cultivation analyses and morphological examination. Cultivation analysis revealed that the numbers of total cultivable bacteria, enterobacteria and enterococci in the faecal samples decreased during the hibernation and restored to pre-hibernation numbers at the end of hibernation. Results of non-cultivation analysis showed time-dependent (but surprisingly almost not individual-specific) changes in the gut microflora and decrease in bacterial variability dependent on hibernation stage. Changes in microflora were accompanied by changes in faecal content identified by morphological analysis. Our results demonstrate that hibernation affects the gut microflora of bats in significant degree in both quantitative and qualitative scale

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

1

Opis fizyczny

p.211-218,fig.,ref.

Twórcy

  • Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Srobarova 2, 04154 Kosice, Slovakia
autor
  • Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Srobarova 2, 04154 Kosice, Slovakia
autor
  • Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Srobarova 2, 04154 Kosice, Slovakia
  • Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Basque Country
autor
  • Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Srobarova 2, 04154 Kosice, Slovakia
  • Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamycka 1176, CZ—165 21 Praha 6, Czech Republic
autor
  • Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Srobarova 2, 04154 Kosice, Slovakia
  • Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4—6, 04001 Kosice, Slovakia

Bibliografia

  • 1. Adesiyun, A. A., A. Stewart-Johnson, and N. N. Thompson. 2009. Isolation of enteric pathogens from bats in Trinidad. Journal of Wildlife Diseases, 45: 952–961. Google Scholar
  • 2. Albuquerque, T. A., and L. Zurek. 2014. Temporal changes in the bacterial community of animal feces and their correlation with stable fly oviposition, larval development, and adult fitness. Frontiers in Microbiology, 5: 590. Google Scholar
  • 3. Barnes, E. M. 1970. Effect of hibernation on the intestinal flora. The American Journal of Clinical Nutrition, 23: 1519–1524. Google Scholar
  • 4. Bouma, H. R., H. V. Carey, and F. G. Kroese. 2010. Hibernation: the immune system at rest? Journal of Leukocyte Biology, 88: 619–624. Google Scholar
  • 5. Calisher, C. H., J. E. Childs, H. E. Field, K. V. Holmes, and T. Schountz. 2006. Bats: important reservoir hosts of emerging viruses. Clinical Microbiology Reviews, 19: 531–545. Google Scholar
  • 6. Canny, G. O., and B. A. Mccormick. 2008. Bacteria in the intestine, helpful residents or enemies from within? Infection and Immunity, 76: 3360–3373. Google Scholar
  • 7. Carey, H. V., W. A. Walters, and R. Knight. 2013. Seasonal restructuring of the ground squirrel gut microbiota over the annual hibernation cycle. American Journal of Physiology (Regulatory, Integrative and Comparative Physiology), 304: R33–R42. Google Scholar
  • 8. Chaverri, G. 2006. Aerobic bacterial flora from the digestive tract of the common vampire bat, Desmodus rotundus (Chiroptera: Phyllostomidae). Revista de Biologia Tropical, 54: 717–724. [In Spanish with English summary]. Google Scholar
  • 9. Daniel, D. S., Y. K. Ng, E. L. Chua, Y. Arumugam, W. L. Wong, and J. V. Kumaran. 2013. Isolation and identification of gastrointestinal microbiota from the short-nosed fruit bat Cynopterus brachyotis brachyotis. Microbiological Research, 168: 485–496. Google Scholar
  • 10. De Mandal, S., Zothansanga, A. K. Panda, S. S. Bisht, and N. S. Kumar. 2015. First report of bacterial community from a bat guano using Illumina next-generation sequencing. Genomics Data, 4: 99–101. Google Scholar
  • 11. Di Bella, C., C. Piraino, S. Caracappa, L. Fornasari, C. Violani, and B. Zava. 2003. Enteric microflora in Italian Chiroptera. Journal of Mountain Ecology, 7: 221–224. Google Scholar
  • 12. Faith, J. J., J. L. Guruge, M. Charbonneau, S. Subramanian, H. Seedorf, A. L. Goodman, J. C. Clemente, R. Knight, A. C. Heath, R. L. Leibel , et al. 2013. The long-term stability of the human gut microbiota. Science, 341: 1237439. Google Scholar
  • 13. Geiser, F. 2004. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annual Review of Physiology, 66: 239–274. Google Scholar
  • 14. Hume, D., C. Beiglbock, T. Ruf, F. Frey-Roos, U. Bruns, and W. Arnold. 2002. Seasonal changes in morphology and function of the gastrointestinal tract of free-living alpine marmots (Marmota marmota). Journal of Comparative Physiology, 172B: 197–207. Google Scholar
  • 15. Jarzembowski, T. 2002. Commensal aerobic bacterial flora of the gastrointestinal tract of Pipistrellus nathusii (Chiroptera: Vespertilionidae): lack of Escherichia coli in fecal samples. Acta Chiropterologica, 4: 99–106. Google Scholar
  • 16. Klite, P. D. 1965. Intestinal bacterial flora and transit time of three neotropical bat species. Journal of Bacteriology, 90: 375–379. Google Scholar
  • 17. Koh, H. W., M. S. Kim, J. S. Lee, H. Kim, and S. J. Park. 2015. Changes in the swine gut microbiota in response to porcine epidemic diarrhea infection. Microbes and Environments, 30: 284–287. Google Scholar
  • 18. Konieczna, I., M. Durlik, M. Kwinkowski, J. Domański, J. Markowski, and W. Kaca. 2007. Properties of bacterial microflora isolated from bat guano. Medycyna Weterynaryjna, 63: 1626–1629. [In Polish with English summary]. Google Scholar
  • 19. Li, L., J. G. Victoria, C. Wang, M. Jones, G. M. Fellers, T. H. Kunz, and E. Delwart. 2010. Bat guanovirome: predominance of dietary viruses from insects and plants plus novel mammalian viruses. Journal of Virology, 84: 6955–6965. Google Scholar
  • 20. Lloyd-Price, J., G. Abu-Ali, and C. Huttenhower. 2016. The healthy human microbiome. Genome Medicine, 8: 51. Google Scholar
  • 21. Lozupone, C. A., J. I. Stombaugh, J. I. Gordon, J. K. Jansson, and R. Knight. 2012. Diversity, stability and resilience of the human gut microbiota. Nature, 489: 220–230. Google Scholar
  • 22. Mikova, E., K. Varcholova, S. Boldogh, and M. Uhrin. 2013. Winter diet analysis in Rhinolophus euryale (Chiroptera). Central European Journal of Biology, 8: 848–853. Google Scholar
  • 23. Moore, M. S., J. D. Reichard, T. D. Murtha, M. L. Nabhan, R. E. Pian, J. S. Ferreira, and T. H. Kunz. 2013. Hibernating little brown myotis (Myotis lucifugus) show variable immunological responses to white-nose syndrome. PLoS ONE, 8: e58976. Google Scholar
  • 24. Nubel, U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R. I. Amann, W. Ludwig, and H. Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Pae nibacillus polymyxa detected by temperature gradient gel electrophoresis. Journal of Bacteriology, 178: 5636–5643. Google Scholar
  • 25. Piersma, T., and A. Lindstrom. 1997. Rapid reversible changes in organ size as a component of adaptive behaviour. Trends in Ecology & Evolution, 12: 134–138. Google Scholar
  • 26. Rożalska, B., G. Radzicki, B. Sadowska, J. Markowski, and W. Rudnicka. 1998. Aerobic microflora of Myotis myotis (Borkhausen, 1797) and Barbastella barbastellus (Schreber, 1774). Bulletin of the Polish Academy of Sciences (Biological Sciences), 46: 59–67. Google Scholar
  • 27. Sommer, F., M. Stahlman, O. Ilkayeva, J. M. Arnemo, J. Kindberg, J. Josefsson, C. B. Newgard, O. Frobert, and F. Backhed. 2016. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Reports, 14: 1655–1661. Google Scholar
  • 28. Sonoyama, K., R. Fujiwara, N. Takemura, T. Ogasawara, J. Watanabe, H. Ito, and T. Morita. 2009. Response of gut microbiota to fasting and hibernation in Syrian hamsters. Applied and Environmental Microbiology, 75: 6451–6456. Google Scholar
  • 29. Stevens, C. E, and I. D. Hume. 1995. Comparative physiology of the vertebrate digestive system, 2nd edition. Cambridge University Press, Cambridge, 400 pp. Google Scholar
  • 30. Stevens, C. E., and I. D. Hume. 1998. Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiological Reviews, 78: 393–427. Google Scholar
  • 31. Termine, E., and G. P. Michel. 2009. Transcriptome and secretome analyses of the adaptive response of Pseudomonas aeruginosa to suboptimal growth temperature. International Microbiology, 12: 7–12. Google Scholar
  • 32. Uhrin, M., S. Boldogh, S. Bucs, M. Paunović, E. Mikova, M. Juhasz, I. Csősz, P. Estok, M. Fulin, P. Gombkotő , et al. 2012. Revision of the occurrence of Rhinolophus euryale in the Carpathian region, Central Europe. Vespertilio, 16: 289–328. Google Scholar
  • 33. Vandžurova, A., P. Bačkor, P. Javorsky, and P. Pristaš. 2013. Staphylococcus nepalensis in the guano of bats (Mam malia). Veterinary Microbiology, 164: 116–121. Google Scholar
  • 34. Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173: 697–703. Google Scholar
  • 35. Whitaker, J. O., Jr. , and A. Karataş. 2010. Hard pellets from bats of Turkey. Acta Chiropterologica, 12: 251–254. Google Scholar
  • 36. Whitaker, J. O., Jr. , and L. J. Rissler. 1992. Winter activity of bats at a mine entrance in Vermillion County, Indiana. The American Midland Naturalist, 127: 52–59. Google Scholar
  • 37. Whitaker, J. O., Jr. , and L. J. Rissler. 1993. Do bats feed in winter? The American Midland Naturalist, 129: 200–203. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-90b9e937-17ff-40b3-ba34-bfbcfc033ad9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.