PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 10 |

Tytuł artykułu

The overaccumulation of glycinebetaine alleviated damages to PSII of wheat flag leaves under drought and high temperature stress combination

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
To analyze the physiological mechanisms underlying the increased tolerance to drought and high temperature stress combination by overproduction of glycinebetaine (GB) in wheat, a transgenic wheat line T6 and its wild-type (WT) Shi4185 were used. The transgenic line was generated by introducing a gene encoding betaine aldehyde dehydrogenase (BADH) into a wheat line Shi4185. The gene was cloned from Garden Orache (Atriplex hortensis L.). Wheat plants were exposed to drought (withholding irrigation), high temperature stress (40°C), and their combination at the flowering stage. Analyses of oxygen-evolving activity and photosystem II (PSII) photochemistry, modulated chlorophyll fluorescence, rapid fluorescence induction kinetics, and the polyphasic fluorescence transients (OJIP) were used to evaluate PSII photochemistry in wheat plants. The results suggest that the PSII in transgenic plants showed higher resistance than that in wild-type plants under the stresses studied here, this increased tolerance was associated with an improvement in stability of the oxygen-evolving complex and the reaction center of PSII; streptomycin treatment can impair the protective effect of overaccumulated GB on PSII. The overaccumulated GB may protect the PSII complex from damage through accelerating D1 protein turnover to alleviate photodamage. The results also suggest that the PSII under combined high temperature and drought stress shows higher tolerance than under high temperature stress alone in both transgenic and wild-type plants.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

10

Opis fizyczny

p.2743-2753,fig.,ref.

Twórcy

autor
  • Shandong Institute of Pomology, Tai’an, 271000, Shandong, China
autor
  • State Key Laboratory of Crop Science Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018, Shandong, China
autor
  • State Key Laboratory of Crop Science Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018, Shandong, China
autor
  • State Key Laboratory of Crop Science Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018, Shandong, China

Bibliografia

  • Alia KY, Sakamoto A, Nonaka H, Hayashi H, Pardha SP, Chen THH, Murata N (1999) Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase. Plant Mol Biol 40:279–288. doi:10.1023/A:1006121821883
  • Allakhverdiev SI, Feyziev YM, Ahemd A, Hayashi H, Aliev JA, Klimov VV, Murata N, Carpentier R (1996) Stabilization of oxygen evolution and primary electron transport reactions in photosystem II against heat stress with glycinebetaine and sucrose. J Photochem Photobiol 34:149–157. doi:10.1016/1011-1344(95)07276-4
  • Appenroth KJ, Stöckel J, Srivastava A, Strasser RJ (2001) Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environ Pollut 115(1):49–64. doi:10.1016/S0269-7491(01)00091-4
  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639. doi:10.1146/annurev.arplant.50.1.601
  • Berry JA, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543. doi:10.1146/annurev.pp.31.060180.002423
  • Bilger W, Schreiber U, Lange OL (1987) Chlorophyll fluorescence as an indicator of heat induced limitation of photosynthesis in Arbutus unedo. Plant responses to stress. Springer-Verlag, Berlin, pp 391–399
  • Butler WL, Kitajima M (1975) Fluorescence quenching in photosystem II of chloroplasts. Biochim Biophys Acta 376(1):116–125
  • Cao J, Govindjee (1990) Chlorophyll a fluorescence transient as an indicator of active and inactive photosystem II in thylakoid membranes. Biochim Biophys Acta 1015:180–188. doi:10.1016/0005-2728(90)90018-Y
  • Chylla R, Whitmarsh J (1989) Inactive photosystem II complexes in leaves. Plant Physiol 90:765–772. doi:10.1104/pp.90.2.765
  • Domingues N, Matos AR, Marques da Silva J, Cartaxana P (2012) Response of the diatom Phaeodactylum tricornutum to photooxidative stress resulting from high light exposure. PLoS One 7(6):e38162
  • Epron D (1997) Effects of drought on photosynthesis and on the thermotolerance of photosystem II in seedlings of cedar (Cedrus atlantica and C. libani). J Exp Bot 48:1835–1841. doi:10.1093/jxb/48.10.1835
  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 99:87–92. doi:10.1016/S0304-4165(89)80016-9
  • Girardi MT, Cona B, Geiken B, Kucera T, Masojidek J, Matoo AK (1996) Longterm drought stress induces structural and functional reorganization of photosystem II. Planta 199:118–125. doi:10.1007/BF00196888
  • Guo BH, Zhang YM, Li HJ, Du LQ, Li YX, Zhang JS, Chen SY, Zhu ZQ (2000) Transformation of wheat with a gene encoding for the betaine aldehyde dehydrogenase (BADH). Acta Botanica Sinica 42:279–283. ISSN:11-1896.0.2000-03-011. (in Chinese, with English abstract)
  • Havaux M (1992) Stress tolerance of photosystem II in vivo: antagonistic effects of water, heat and photoinhibition stress. Plant Physiol 100:424–432. doi:10.1104/pp.100.1.424
  • Havaux M (1993a) Characterization of thermal damage to the photosynthetic electron transport system in potato leaves. Plant Sci 94:19–33. doi:10.1016/0168-9452(93)90003-I
  • Havaux M (1993b) Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant Cell Environ 16:461–467. doi:10.1111/j.1365-3040.1993.tb00893.x
  • Holmström KO, Somersalo S, Mandal A, Palva TE, Welin B (2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycinebetaine. J Exp Bot 51:177–185. doi:10.1093/jexbot/51.343.177
  • Jiang CD, Gao HY, Zou Q (2003a) Changes of donor and accepter side in photosystem II complex induced by iron deficiency in attached soybean and maize leaves. Photosynthetica 41:267–271. doi:10.1023/B:PHOT.0000011960.95482.91
  • Jiang CD, Gao HY, Zou Q (2003b) Effects of streptomycin treatment on chlorophyll fluorescence parameters and xanthophyll deepoxidation level in maize leave. J Plant Physiol Mol Biol 29(3):21–226 (in Chinese)
  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basis. Annu Rev Plant Physiol Plant Mol Biol 42:313–349. doi:10.1146/annurev.pp.42.060191.001525
  • Krause GH, Santarius KA (1975) Relative thermostability of the chloroplast envelope. Planta 127:285–299. doi:10.1007/BF00380726
  • Krüger GHJ, Tsimilli-Michael M, Strasser RJ (1997) Light stress provokes plastic and elastic modifications in structure and function of photosystem II in camellia leaves. Physiol Plant 101:265–277. doi:10.1111/j.1399-3054.1997.tb00996.x
  • Lu C, Zhang J (2000) Heat-induced multiple effects on PSII in wheat plants. Plant Physiol 156:259–265. doi:10.1016/S0176-1617(00)80315-6
  • Marques da Silva J, Bernardes da Silva A, Pádua M (2007) Modulated chlorophyll a fluorescence: a tool for teaching photosynthesis. J Biol Educ 41:178–183. doi:10.1080/00219266.2007.9656094
  • Masojidek J, Trivedi S, Halshaw L, Alexioum A, Hall DO (1991) The synergistic effect of drought and light stresses in sorghum and pear millet. Plant Physiol 96:198–207. doi:10.1104/pp.96.1.198
  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19. doi:10.1016/j.tplants.2005.11.002
  • Nishiyama Y, Allakhverdiev SI, Murata N (2005) Inhibition of the repair of photosystem II by oxidative stress in cyanobacteria. Photosynth Res 84:1–7. doi:10.1007/s11120-004-6434-0
  • Nishiyama Y, Allakhverdiev SI, Murata N (2011) Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol Plant 142:35–46. doi:10.1111/j.1399-3054.2011.01457.x
  • Ohnishi N, Murata N (2006) Glycinebetaine counteracts the inhibitory effects of salt stress on the degradation and synthesis of D1 protein during photoinhibition in Synechococcus sp. PCC 7942. Plant Physiol 141(2):758–765. doi:10.1104/pp.106.076976
  • Prasad KVSK, Pardha Saradhi P (2004) Enhance tolerance to photoinhibition in transgenic plants through targeting of glycinebetaine biosynthesis into chloroplasts. Plant Sci 166: 1197–1212. doi:10.1016/j.plantsci.2003.12.031
  • Rizhsky L, Liang HJ, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151. doi:10.1104/pp.006858
  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171. doi:10.1046/j.0016-8025.2001.00790.x
  • Santarius KA (1975) The protective effects of sugars on chloroplast membranes during temperature and water stress and its relationship to frost, desiccation and heat resistance. Planta 113:105–114. doi:10.1007/BF00388196
  • Schreiber U, Armond PA (1978) Heat-induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat damage at the pigment level. Biochim Biophys Acta 502:138–151. doi:10.1016/0005-2728(78)90138-X
  • Schreiber U, Berry JA (1977) Heat induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. Planta 136:233–238. doi:10.1007/BF00385990
  • Shulaeva V, Cortesa D, Millerb G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132:199–208. doi:10.1111/j.1399-3054.2007.01025.x
  • Srivastava A, Guisse B, Greppin H (1997) Regulation of antenna structural and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorescence transient: OKJIP. Biochim Biophys Acta 1320:95–106
  • Strasser RJ (1997) Donor side capacity of photosystem II probed by chlorophyll a fluorescence transient. Photosynth Res 52: 147–155. doi:10.1023/A:1005896029778
  • Strasser BJ, Strasser RJ (1995) Measuring fast fluorescence transients to address environmental questions: the JIP-test. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol V. Kluwer Academic Publishers, The Netherlands, pp 977–980
  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism, regulation and adaptation, Chap. 25. Taylor and Francis, London, pp 445–483
  • van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150. doi:10.1007/BF00033156
  • Wang GP, Hui Z, Li F, Zhao MR, Zhang J, Wang W (2010a) Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine. Plant Biotechnol Rep 4:213–222. doi:10.1007/s11816-010-0139-y
  • Wang GP, Zhang XY, Li F, Luo Y, Wang W (2010b) Overaccumulation of glycine betaine enhances tolerance to drought and heat stress in wheat leaves in the protection of photosynthesis. Photosynthetica 48(1):117–126. doi:10.1007/s11099-010-0016-5
  • Yang XH, Wen XG, Gong HM, Lu QT, Yang ZP, Tang YL, Liang Z, Lu CM (2007) Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta 225:719–733. doi:10.1007/s00425-006-0380-3
  • Yang XH, Liang Z, Wen XG, Lu CM (2008) Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66:73–86. doi:10.1007/s11103-007-9253-9

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8f58f90e-789b-40bf-ae11-24d05faf741e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.