PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2014 | 67 | 4 |

Tytuł artykułu

The detection of Plasmodiophora brassicae using Loop-mediated isothermal DNA amplification

Treść / Zawartość

Warianty tytułu

PL
Wykrywanie Plasmodiophora brassicae przy zastosowaniu amplifikacji DNA w warunkach izotermicznych z wykorzystaniem starterów zapętlających (LAMP)

Języki publikacji

EN

Abstrakty

EN
Plasmodiophora brassicae, the cause of clubroot, is a very serious problem preventing from successful and profitable cultivation of oilseed rape in Poland. The pathogen was found in all main growing areas of oilseed rape; it also causes considerable problems in growing of vegetable brassicas. The aim of this work was to elaborate fast, cheap and reliable screening method to detect P. brassicae. To achieve this aim the Loopmediated isothermal DNA amplification (LAMP) technique has been elaborated. The set of three primer pairs was designed using LAMP software. The detection was performed with the GspSSD polymerase, isolated from bacteria Geobacillus sp., with strand displacement activity. DNA extraction from clubbed roots obtained from farmers’ fields of oilseed rape infected by P. brassicae was done using a modified CTAB method. The reaction was performed for 60 min at 62oC. The visual detection was done using CFX96 Real Time PCR Detection System (BioRad) or Gerie II Amplicatior (Optigen). The detection with LAMP proved its usefulness; it was easy, fast and accurate and independent of plant age. The detection limit was 5 spores per 1 μl of the spore suspension, so LAMP was less sensitive than quantitative PCR tests reported in the literature. However, the method is cheap and simple, so it is a good alternative, when it comes to practical use and the assessment of numerous samples.
PL
Plasmodiophora brassicae powoduje kiłę kapusty, chorobę obniżającą plonowanie i redukującą rentowność uprawy rzepaku. Patogen występuje we wszystkich głównych regionach jego uprawy, a także stanowi poważny problem dla producentów warzyw kapustowatych. Celem badań było opracowanie szybkiego, taniego i niezawodnego sposobu wykrywania P. brassicae. W tym celu opracowano metodę amplifikacji DNA w warunkach izotermicznych z wykorzystaniem starterów zapętlających (LAMP). Do detekcji wykorzystano polimerazę GspSSD, wyodrębnioną z bakterii Geobacillus sp., umożliwiającą zastępowanie nici DNA bez potrzeby zmiany profilu temperatury. Ekstrakcję DNA z wyrośli na korzeniach wykonano z zastosowaniem zmodyfikowanej metody CTAB. Reakcję prowadzono przez 60 minut w temperaturze 62oC. Wyniki zbierano przy zastosowaniu systemu CFX96 Real Time PCR Detection System (BioRad) lub Gerie II Amplificator (Optigene). Opracowana metoda była łatwa do wykonania, szybka, dokładna i niezależna od wieku badanej rośliny. LAMP był testem mniej czułym aniżeli opisane w literaturze metody ilościowego PCR; umożliwił wykrywanie 5000 zarodników w 1 mL zawiesiny. Jest to jednak metoda znacznie łatwiejsza do wykonania i zdecydowanie tańsza, co czyni ją przydatną do detekcji P. brassicae w przypadku konieczności oceny jego obecności w licznych próbach polowych.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

67

Numer

4

Opis fizyczny

p.59-65,fig.,ref.

Twórcy

autor
  • Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska34, 60-479 Poznan, Poland
  • Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska34, 60-479 Poznan, Poland
autor
  • Novazym Polska, Poznan Science and Technology Park, Rubiez 46, Poznan, Poland
autor
  • Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska34, 60-479 Poznan, Poland

Bibliografia

  • Agrios GN. Plant Pathology. Elsevier Academic Press; 2005.
  • Dixon GR. The occurrence and economic impact of Plasmodiophora brassicae and clubroot disease. J Plant Growth. Regul. 2009; 28: 194–202. http://dx.doi.org/10.1007/s00344-009-9090-y.
  • Burki F, Keeling PJ. Rhizaria. Curr Biol. 2014; 24(3): R103–R107 http://dx.doi.org/10.1016/j.cub.2013.12.025.
  • Burki F, Kudryavtsev A, Matz MV, Aglyamova GV, Bulman S, Fiers M, Keeling PJ, Pawlowski J. Evalution of Rhizaria: new insights from phylogenomic analysis of uncultivated protists. BMC Evol Biol. 2010; 10: 377. http://dx.doi.org/10.1186/1471-2148-10-377.
  • Robak J. Zmienność patotypów Plasmodiophora brassicae Wor. występujących w Polsce i ich patogeniczność w stosunku do odmian i linii hodowlanych Brassica oleracea [Variability of Plasmodiophora brassicae Wor pathotypes. Occurring in Poland and their pathogenicity to cultivars and breeding lines of Brassica oleracea]. Habilitation monograph 1991, no 6. Instytut Warzywnictwa, Skierniewice, 61 pp.
  • Korbas M, Jajor E, Budka A. Clubroot (Plasmodiophora brassicae) – a threat for oilseed rape. J Plant Prot Res. 2009; 49(4): 446–451. http://dx.doi.org/10.2478/v10045-009-0071-8.
  • Rashid U, Anwar F. Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel. 2008; 87(3): 265–273. http://dx.doi.org/10.1016/j.fuel.2007.05.003.
  • Bozbas K. Biodiesel as an alternative motor fuel: Production and policies in the European Union. Renewable and Sustainable Energy Reviews. 2008; 12(2): 542–552.
  • Dixon GR. Plasmodiophora brassicae and its environment. J Plant Growth Regul. 2009; 28: 212–228. http://dx.doi.org/10.1007/s00344-009-9098-3.
  • Diederichsen E, Frauen M, Linders EGA, Hatakeyama K, Hirai M. Status and perspectives of clubroot resistance breeding in crucifer crops. J Plant Growth Regul. 2009; 28: 265–281. http://dx.doi.org/10.1007/s00344-009-9100-0.
  • Feng J, Hwang SH, Strelkov SE. Studies into primary and secondary infection processes by Plasmodiophora brassicae on canola. Plant Pathol. 2012; 62(1): 177–183. http://dx.doi.org/10.1111/j.1365-3059.2012.02612.x.
  • Wallenhammar AC, Almquist C, Jonsson A. In-field distribution of Plasmodiophora brassicae measured using quantitative real-time PCR. Plant Pathol. 2012; 61: 16–28. http://dx.doi.org/10.1111/j.1365-3059.2011.02477.x.
  • Ito S, Maehara T, Tanaka S, Kameya-Iwaki M, Yano S, Kishi F. Cloning of a single-copy DNA sequence unique to Plasmodiophora brassicae. Physiol Molec Plant Pathol. 1997; 50: 289–300. http://dx.doi.org/10.1006/pmpp.1997.0087.
  • Ito S, Maehara T, Maruno E, Tanaka S, Kameya-Iwaki M, Kishi F. Development of a PCR-based assay for the detection of Plasmodiophora brassicae in soil. J Phytopathol. 1999; 147: 83–88. http://dx.doi.org/10.1111/j.1439-0434.1999.tb03812.x.
  • Faggian R, Bulman SR, Lawrie AC, Porter IJ. Specific Polymerase Chain Reaction primers for the detection of Plasmodiophora brassicae in soil and water. Phytopathol. 1999; 89: 392–397. http://dx.doi.org /10.1094/PHYTO.1999.89.5.392.
  • Staniaszek M, Robak J, Marczewski W. Detection of Plasmodiophora brassicae Wor. by bioassay and nested PCR methods. Vegetable Crops Research Bulletin. 2001; 54: 131–136.
  • Cao T, Tewari J, Strelkov SE. 2007. Molecular detection of Plasmodiophora brassicae, causal agent of clubroot of crucifers, in plant and soil. Plant Dis. 2007; 91: 80–87. http://dx.doi.org/10.1094/PD-91-0080.
  • Li JP, Li Y, Shi YX, Xie XW, A-li C, Li BJ. Development of a Real-Time PCR assay for Plasmodiophora brassicae and its detection in soil samples. J Integr Agric. 2013; 12(10): 1799–1806. http://dx.doi.org/10.1016/S2095-3119(13)60491-8.
  • Somé A, Manzanares MJ, Laurens F, Baron F, Thomas G, Rouxel F. Variation for virulence on Brassica napus L. amongst Plasmodiophora brassicae collections from France and derived single-spore isolates. Plant Pathol. 1996; 45(3): 432–439. http://dx.doi.org/10.1046/j.1365-3059.1996.d01-155.x.
  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000; 28: E63. http://dx.doi.org/10.1093/nar/28.12.e63.
  • Mori Y, Notomi T. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J Infect Chemother. 2009; 15: 60–69 http://dx.doi.org/10.1007/s10156-009-0669-9.
  • Nagamine K., Hase T., Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes 2002; 16: 223–229. http://dx.doi.org/10.1006/mcpr.2002.0415.
  • Kaczmarek J, Jędryczka M. Characterization of two coexisting pathogen populations of Leptosphaeria spp., the cause of stem canker of brassicas. Acta Agrobot. 2011; 64 (2): 3-14.
  • Eckert M, Gout L, Rouxel T, Blaise F, Jędryczka M, Fitt B, Balesdent MH. Identification and characterization of polymorphic minisatellites in the phytopathogenic ascomycete Leptosphaeria maculans. Current Genet. 2005; 47: 37–48. http://dx.doi.org/10.1007/s00294-004-0539-z.
  • Sun JM, Irzykowski W, Jedryczka M, Han FX. Analysis of the genetic structure of Sclerotinia sclerotiorum (Lib.) de Bary populations from different regions and host plants by Random Amplified Polymorphic DNA markers. J Integr Plant Biol. 2005; 47(4): 385–395. http://dx.doi.org/10.1111/j.1744-7909.2005.00077.x.
  • Buczacki ST, Toxopeus H, Mattusch P, Johnston TD, Dixon DR. Study of physiologic specialization in Plasmodiophora brassicae: Proposals for attempted rationalization through an international approach. Trans Br Mycol Soc. 1975; 65(2): 295–303. http://dx.doi.org/10.1016/S0007-1536(75)80013-1.
  • Manzanares-Dauleux MJ, Divaret I, Baron F, Thomas G. Assessment of biological and molecular variability between and within field isolates of Plasmodiophora brassicae. Plant Pathol. 2001, 50: 165–173. http://dx.doi.org/10.1046/j.1365-3059.2001.00557.x.
  • Strelkov SE, Tewari JP, Smith-Degenhardt E. Characterization of Plasmodiophora brassicae populations from Alberta, Canada. Can J Plant Pathol. 2006; 28: 467–474. http://dx.doi.org/10.1080/07060660609507321.
  • Manzanares-Dauleux MJ, Barret P, Thomas G. Development of a pathotype specific SCAR marker in Plasmodiophora brassicae. Eur J Plant Pathol. 2000; 106: 781–787. http://dx.doi.org/10.1023/A:1026586803761.
  • Jędryczka M, Burzyński A, Brachaczek A, Langwiński W, Song P, Kaczmarek J. Loop-mediated isothermal amplification as a good tool to study changing Leptosphaeria populations in oilseed rape plants and air samples. Acta Agrobot. 2013; 66(4): 93–100. http://dx.doi.org/10.5586/aa.2013.055.
  • Ptaszyńska AA, Borsuk G, Woźniakowski G, Gnat S, Małek W. Loop-mediated isothermal amplification (LAMP) assays for rapid detection and differentiation of Nosema apis and N. ceranae in honeybees.; FEMS Microbiol Lett. 2014: 357(1): 40–48. http://dx.doi.org/10.1111/1574-6968.12521.
  • Misawa Y, Yoshida A, Saito R, Yoshida H, Okuzumi K, Ito N. et al. Application of loop-mediated isothermal amplification technique to rapid and direct detection of methicillin-resistant Staphylococcus aureus (MRSA) in blood cultures. J Infect Chemother. 2007; 13: 134–140. http://dx.doi.org/10.1007/s10156-007-0508-9.
  • Dinh DT, Le MTQ, Vuong CD, Hasebe F, Morita K. An updated Loop-mediated isothermal amplification method for rapid diagnosis of H5N1 avian influenza viruses. Trop Med Health 2011; 39(1): 3–7. http://dx.doi.org/10.2149%2Ftmh.2010-21
  • Kaneko H, Kawana T, Fukushima E, Suzutani T. Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J Biochem Biophys Methods 2007; 70: 499–501. http://dx.doi.org/10.1016/j.jbbm.2006.08.008.
  • Tomlinson J, Boonham N. Potential of LAMP for detection of plant pathogens. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2008; 3: 1–7. http://dx.doi.org/10.1079/PAVSNNR20083066.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8e64c09c-95ae-4496-bb47-79a75ecf32d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.