PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 67 | 3 |

Tytuł artykułu

Optimization of mixed solid-state fermentation of soybean meal by Lactobacillus species and Clostridium butyricum

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Soybean meal is the main vegetable protein source in animal feed. Soybean meal contains several anti-nutritional factors, which directly affect digestion and absorption of soy protein, thereby reducing growth performance and value in animals. Fermented soybean meal is rich in probiotics and functional metabolites, which facilitates soybean protein digestion, absorption and utilization in piglets. However, the mixed solid-state fermentation (SSF) conditions of soybean meal remain to be optimized. In this study, we investigated the optimal parameters for SSF of soybean meal by Lactobacillus species and Clostridium butyricum. The results showed that two days of fermentation was sufficient to increase the viable count of bacteria, lactic acid levels and degradation of soybean protein in fermented soybean meal at the initial moisture content of 50%. The pH value, lowering sugar content and oligosaccharides in fermented soybean meal, was significantly reduced at the initial moisture content of 50% after two days of fermentation. Furthermore, the exogenous proteases used in combination with probiotics supplementation were further able to enhance the viable count of bacteria, degradation of soybean protein and lactic acid level in the fermented soybean meal. In addition, the pH value and sugar content in fermented soybean meal were considerably reduced in the presence of both proteases and probiotics. Furthermore, the fermented soybean meal also showed antibacterial activity against Staphylococcus aureus and Escherichia coli. These results together suggest that supplementation of both proteases and probiotics in SSF improves the nutritional value of fermented soybean meal and this is suitable as a protein source in animal feed.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

67

Numer

3

Opis fizyczny

p.297-305,fig.,ref.

Twórcy

autor
  • Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
  • Henan Zheng Ben Qing Yuan Technology Development CO.LED., Shangqiu, Henan Province, China
autor
  • Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
autor
  • Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
autor
  • College of Life Science, Shangqiu Normal University, Shangqiu, China
autor
  • Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan

Bibliografia

  • Adeyemo SM, Onilude AA. 2014. Reduction of oligosaccharide content of soybeans by the action of Lactobacillus plantarum isolated from fermented cereals. Afr J Biotechnol. 13:3790–3796.
  • Amadou I, Tidjani A, Foh MBK, Kamara MT, Le GW. 2010a. Influence of Lactobacillus plantarum Lp6 fermentation on the functional properties of soybean protein meal. Emir J Food Agric. 22: 456–465.
  • Amadou I, Kamara MT, Tidjani A, Foh MBK, Le GW. 2010b. Physicochemical and nutritional analysis of fermented soybean protein meal by Lactobacillus plantarum Lp6. World J Dairy Food Sci. 5:114–118.
  • Amadou I, Le GW, Shi YH, Gbadamosi OS, Kamara MT, Jin S. 2011. Optimized Lactobacillus Plantarum Lp6 solid-state fermentation and proteolytic hydrolysis improve some nutritional attributes of soybean protein meal. J Food Biochem. 35:1686–1694.
  • Cromwell GL. 2012. Soybean meal: an exceptional protein source. Soybean Meal INFOcenter. http://www.soymeal.org. accessed 05.09.2012.
  • Chaucheyras-Durand F, Durand H. 2010. Probiotics in animal nutrition and health. Benef Microbes 1:3–9.
  • Choi J, Shinde P, Ingale S, Kim J, Kim Y, Kim K, Kwon I, Chae B. 2011. Evaluation of multi-microbe probiotics prepared by submerged liquid or solid substrate fermentation and antibiotics in weaning pigs. Livest Sci. 138:144–151.
  • Deng J, Li Y, Zhang J, Yang Q. 2012. Co-administration of Bacillus subtilis RJGP16 and Lactobacillus salivarius B1 strongly enhances the intestinal mucosal immunity of piglets. Res Vet Sci. 94:62–68.
  • Dumbrepatil A, Adsul M, Chaudhari S, Khire J, Gokhale D. 2008. Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation. Appl Environ Microb. 74:333–335.
  • De Cesare A, Sirri F, Manfreda G, Moniaci P, Giardini A, Zampiga M, Meluzzi A. 2017. Effect of dietary supplementation with Lactobacillus acidophilus D2/CSL (CECT 4529) on caecum microbioma and productive performance in broiler chickens. PLoS One. 12(5):e0176309.
  • Feng J, Liu X, Xu ZR, Liu YY, Lu YP. 2007. Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers. Anim Feed Sci Technol. 134:235–242.
  • Fuller R. 1989. Probiotics in man and animals. J Appl Bacteriol. 66:365–378.
  • Grant G. 1989. Anti-nutritional effects of soyabean: a review. Prog Food Nutr Sci. 13:317–348.
  • Herkelman KL, Cromwell GL, Stahly TS, Pfeiffer TW, Knabe DA. 1992. Apparent digestibility of amino acids in raw and heated conventional and low-trypsin-inhibitor soybeans for pigs. J Anim Sci. 70:818–826.
  • Hong KJ, Lee CH, Kim SW. 2004. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J Med Food. 7:430–435.
  • Kiers JL, Meijer JC, Nout MJ, Rombouts FM, Nabuurs MJ, van der Meulen J. 2003. Effect of fermented soya beans on diarrhoea and feed efficiency in weaned piglets. J Appl Microbiol. 95:545–552.
  • Li DF, Nelssen JL, Reddy PG, Blecha F, Hancock JD, Allee GL, Goodband RD, Klemm RD. 1990. Transient hypersensitivity to soybean meal in the early weaned pig. J Anim Sci. 68:1790–1799.
  • Ma Y, Wang T. 2010. Deactivation of soybean agglutinin by enzymatic and other physical treatments. J Agric Food Chem. 58: 11413–11419.
  • Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 31:426–428.
  • Mukherjee R, Chakraborty R, Dutta A. 2016. Role of fermentation in improving nutritional quality of soybean meal – a review. Asian-Australas J Anim Sci. 29:1523–1529.
  • Mathivanan R, Selvaraj P, Nanjappan K. 2006. Feeding of fermented soybean meal on broiler performance. Int J Poult Sci. 5:868–872.
  • Patel HM, Wang R, Chandrashekar O, Pandiella SS, Webb C. 2004. Proliferation of Lactobacillus plantarum in solid-state fermentation of oats. Biotechnol Prog. 20:110–116.
  • Pinto GAS, Leite SGF, Terzi SC, Couri C. 2001. Selection of tannase-producing Aspergillus niger strains. Braz J Microbiol. 32:24–26.
  • Shi C, Zhang Y, Lu Z, Wang Y. 2017. Solid-state fermentation of corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value. J Anim Sci Biotechnol. 8:50.
  • Timmerman H, Koning C, Mulder L, Rombouts F, Beynen A. 2004. Monostrain, multistrain and multispecies probiotics – a comparison of functionality and efficacy. Int J Food Microbiol. 96:219–233.
  • Wang Y, Liu XT, Wang HL, Li DF, Piao XS, Lu WQ. 2014. Optimization of processing conditions for solid-state fermented soybean meal and its effects on growth performance and nutrient digestibility of weanling pigs. Livest Sci. 170:91–99.
  • Wang L, Liu C, Chen M, Ya T, Huang W, Gao P, Zhang H. 2015. A novel Lactobacillus plantarum strain P-8 activates beneficial immune response of broiler chickens. Int Immunopharmacol. 29: 901–907.
  • Yang CM, Cao GT, Ferket PR, Liu TT, Zhou L, Zhang L, Xiao YP, Chen AG. 2012. Effects of probiotic, Clostridium butyricum, on growth performance, immune function, and cecal microflora in broiler chickens. Poult Sci. 91:2121–2129.
  • Ying W, Zhu R, Lu W, Gong L. 2009. A new strategy to apply Bacillus subtilis MA139 for the production of solid-state fermentation feed. Lett Appl Microbiol. 49:229–234.
  • Zhao Y, Qin G, Sun Z, Zhang X, Bao N, Wang T, Zhang B, Zhang B, Zhu D, Sun L. 2008. Disappearance of immunoreactive glycinin and β-conglycinin in the digestive tract of piglets. Arch Anim Nutr. 62:322–330.
  • Zhao S, Hu N, Huang J, Liang Y, Zhao B. 2008. High-yield spore production from Bacillus licheniformis by solid state fermentation. Biotechnol Lett. 30:295–297.
  • Zhang C, Yang H, Yang F, Ma Y. 2009. Current progress on butyric acid production by fermentation. Curr Microbiol. 59:656–663.
  • Zhang YR, Xiong HR, Guo XH. 2014. Enhanced viability of Lactobacillus reuteri for probiotics production in mixed solid-state fermentation in the presence of Bacillus subtilis. Folia Microbiol. 59:31–36.
  • Zhang L, Cao GT, Zeng XF, Zhou L, Ferket PR, Xiao YP, Chen AG, Yang CM. 2014. Effects of Clostridium butyricum on growth performance, immune function, and cecal microflora in broiler chickens challenged with Escherichia coli K88. Poult Sci. 93:46–53.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8d9feb55-2c97-4682-9501-d882d513fa07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.