PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 5 |

Tytuł artykułu

Visible light-driven photocatalytic degradation of 1,2,4-trichlorobenzene with synthesized Co3O4 photocatalyst

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A cubic crystal form Co₃O₄ was synthesized using the sol-gel method and applied as catalyst in the visible light-driven photocatalytic degradation of 1,2,4-trichlorobenzene (1,2,,4-TCB). 1,2,4-TCB removal efficiency initially increased and was followed by a gentle decrease as the Co₃O₄ dosage increased, with the optimal dosage of 2.0 g/L. The degradation rate changed positively with light intensity and reaction temperature. However, pH exerted only a slight effect on 1,2,4-TCB degradation. Strong acidic and basic conditions were conducive to the photocatalytic degradation of 1,2,4-TCB. The optimal parameters for the photocatalytic degradation of 1,2,4-TCB were found at a Co₃O4 dosage of 2.0 g/L, 350 W of illumination intensity, initial 1,2,4-TCB concentration of 7.5 mg/L at 30ºC, with 1,2,4-TCB removal efficiency of 90.13% after 6.0 hours photocatalytic degradation. The Co₃O₄ synthesized in the study with high-purity and stable properties guaranteed its high catalytic activity and stability. The possible mechanisms of visible light-driven photocatalytic degradation of 1,2,4-TCB with synthesized Co₃O₄ photocatalyst were also proposed.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

5

Opis fizyczny

p.2285-2292,fig.,ref.

Twórcy

autor
  • Hunan Provincial Key Laboratory of Shale Gas Resource Exploitation, Xiangtan, P.R. China
  • School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, P.R. China
autor
  • Hunan Provincial Key Laboratory of Shale Gas Resource Exploitation, Xiangtan, P.R. China
  • School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, P.R. China
  • Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Xiangtan, P.R. China

Bibliografia

  • 1. ZHANG J.Y., ZHAO W., PAN J., QIU L.M., ZHU Y.M. Tissue-dependent distribution and accumulation of chlorobenzenes by vegetables in urban area. Environment International, 31 (6), 2005.
  • 2. DONG W.H., ZHANG P., LIN X.Y., ZHANG Y., TABOURE A. Natural attenuation of 1,2,4-trichlorobenzene in shallow aquifer at the Luhuagang’s landfill site, Kaifeng, China. Science of the Total Environment, 505, 2015.
  • 3. WANG H., HWANG J., HUANG J., XU Y., YU G., LI W., ZHANG K., LIU K., CAO Z., MA X., WEI Z., WANG Q. Mechanochemical remediation of PCB contaminated soil. Chemosphere, 168, 2017.
  • 4. BARBER J.L., SWEETMAN A.J., VAN WIJK D., JONES K.C. Hexachlorobenzene in the global environment: Emissions, levels, distribution, trends and processes. Science of the Total Environment, 349 (1-3), 2005.
  • 5. HUO S., LI C., XI B., YU Z., YEAGER K.M., WU F. Historical record of polychlorinated biphenyls (PCBs) and special occurrence of PCB 209 in a shallow fresh-water lake from eastern China. Chemosphere, 184, 2017.
  • 6. ANIM A.K., DRAGE D.S., GOONETILLEKE A., MUELLER J.F., AYOKO G.A. Distribution of PBDEs, HBCDs and PCBs in the Brisbane River estuary sediment. Marine Pollution Bulletin, 120 (1), 2017.
  • 7. LU Q., FUTTER M.N., NIZZETTO L., BUSSI G., JÜRGENS M.D., WHITEHEAD P.G. Fate and transport of polychlorinated biphenyls (PCBs) in the River Thames catchment - Insights from a coupled multimedia fate and hydrobiogeochemical transport model. Science of the Total Environment, 572, 2016.
  • 8. SCHROLL R., BRAHUSHI F., DORFLER U., KUHN S., FEKETE J., MUNCH J.C. Biomineralisation of 1,2,4-trichlorobenzene in soils by an adapted microbial population. Environmental Pollution, 127 (3), 2004.
  • 9. TAKEUCHI S., ANEZAKI K., KOJIMA H. Effects of unintentional PCBs in pigments and chemical products on transcriptional activity via aryl hydrocarbon and nuclear hormone receptors. Environmental Pollution, 227, 2017.
  • 10. ZOLEZZI M., CATTANEO C., TARAZONA J.V. Probabilistic ecological risk assessment of 1,2,4-trichlorobenzene at a former industrial contaminated site. Environmental Science & Technology, 39 (9), 2005.
  • 11. TORRES P., TRISTÃO DA CUNHA R., MICAELO C., RODRIGUES A.D.S. Bioaccumulation of metals and PCBs in Raja clavata. Science of the Total Environment, 573, 2016.
  • 12. MONFERRAN M.V., ECHENIQUE J.R., WUNDERLIN D.A. Degradation of chlorobenzenes by a strain of Acidovorax avenae isolated from a polluted aquifer. Chemosphere, 61 (1), 2005.
  • 13. STUART-SMITH S.J., JEPSON P.D. Persistent threats need persistent counteraction: Responding to PCB pollution in marine mammals. Marine Policy, 84, 2017.
  • 14. CZEGENY Z., JAKAB E., BLAZSO M., BHASKAR T., SAKATA Y. Thermal decomposition of polymer mixtures of PVC, PET and ABS containing brominated flame retardant: Formation of chlorinated and brominated organic compounds. Journal of Analytical and Applied Pyrolysis, 96, 2012.
  • 15. FIELD J.A., SIERRA-ALVAREZ R. Microbial degradation of chlorinated benzenes. Biodegradation, 19 (4), 2008.
  • 16. GAO S., YANG J.Y., LIU M., YAN H.Z., LI W.X., ZHANG J.Q., LUO Y.B. Enhanced photovoltaic performance of CdS quantum dots sensitized highly oriented two-endopened TiO₂ nanotubes array membrane. Journal of Power Sources, 250, 2014.
  • 17. LI J., ZHAO L., WANG S.M., HU J.H., DONG B.H., LU H.B., WAN L., WANG P. Great improvement of photoelectric property from co-sensitization of TiO₂ electrodes with CdS quantum dots and dye N719 in dyesensitized solar cells. Materials Research Bulletin, 48 (7), 2013.
  • 18. MENDEZ-MEDRANO M.G., KOWALSKA E., LEHOUX A., HERISSAN A., OHTANI B., RAU S., COLBEAUJUSTIN C., RODRIGUEZ-LOPEZ J.L., REMITA H. Surface Modification of TiO₂ with Au Nanoclusters for Efficient Water Treatment and Hydrogen Generation under Visible Light. Journal of Physical Chemistry C, 120 (43), 2016.
  • 19. LU Y. Recent Progress in Crystal Facet Effect of TiO₂ Photocatalysts. Acta Physico-Chimica Sinica, 32 (9), 2016.
  • 20. WANG J., WANG X., LIU X.L., ZHU T.Y., GUO Y.Y., QI H. Catalytic oxidation of chlorinated benzenes over V₂O₅/TiO₂ catalysts: The effects of chlorine substituents. Catalysis Today, 241, 2015.
  • 21. OBERG T., BERGBACK B., FILIPSSON M. Catalytic effects by metal oxides on the formation and degradation of chlorinated aromatic, compounds in fly ash. Chemosphere, 71 (6), 2008.
  • 22. LI C., JIANG F., SUN D., QIU B. Catalytic ozonation for advanced treatment of incineration leachate using (MnO₂-Co₃O₄)/AC as a catalyst. Chemical Engineering Journal, 325, 2017.
  • 23. ZHANG D.E., REN L.Z., HAO X.Y., PAN B.B., WANG M.Y., MA J.J., LI F., LI S.A., TONG Z.W. Synthesis and photocatalytic property of multilayered Co₃O₄. Applied Surface Science, 355, 2015.
  • 24. LIN S.J., SU G.J., ZHENG M.H., JIA M.K., QI C.S., LI W. The degradation of 1,2,4-trichlorobenzene using synthesized Co₃O₄ and the hypothesized mechanism. Journal of Hazardous Materials, 192 (3), 2011.
  • 25. GAO L.B., DIWU J.T., ZHANG Q., XU H.Y., CHOU X.J., TANG J., XUE C.Y. A Green and Facile Synthesis of Carbon-Incorporated Co₃O₄ Nanoparticles and Their Photocatalytic Activity for Hydrogen Evolution. Journal of Nanomaterials, 2015.
  • 26. XU H.Y., GAO L.B., ZHANG Q., LI J.Y., DIWU J.T., CHOU X.J., TANG J., XUE C.Y. Preparation Method of Co₃O₄ Nanoparticles Using Degreasing Cotton and Their Electrochemical Performances in Supercapacitors. Journal of Nanomaterials, (2), 2014.
  • 27. JANA T.K., PAL A., CHATTERJEE K. Magnetic and photocatalytic study of Co₃O₄-ZnO nanocomposite. Journal of Alloys and Compounds, 653, 2015.
  • 28. ZHANG Y., HUANG J., DING Y. Porous Co₃O₄/CuO hollow polyhedral nanocages derived from metalorganic frameworks with heterojunctions as efficient photocatalytic water oxidation catalysts. Applied Catalysis B: Environmental, 198, 2016.
  • 29. CHEN G., SI X., YU J., BAI H., ZHANG X. Doping nano-Co₃O₄ surface with bigger nanosized Ag and its photocatalytic properties for visible light photodegradation of organic dyes. Applied Surface Science, 330, 2015.
  • 30. XIAO Q., ZHANG J., XIAO C., TAN X. Photocatalytic degradation of methylene blue over Co₃O₄/Bi₂WO₆ composite under visible light irradiation. Catalysis Communications, 9 (6), 2008.
  • 31. KIM T.Y., MIN B.J., KIM S.J., CHO S.Y. Photocatalytic Degradation of 2,4-Dinitrophenol Using TiO₂ in Aqueous Solution. Journal of Nanoscience and Nanotechnology, 10 (5), 2010.
  • 32. WU C.H. Photodegradation of CI Reactive Red 2 in UV/TiO₂-based systems: Effects of ultrasound irradiation. Journal of Hazardous Materials, 167 (1-3), 2009.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8d3ed1b6-5695-4f0d-9277-71317e8a558c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.