PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 3 |

Tytuł artykułu

Effects of biomass co-combustion with coal on functional speciation and mobility of heavy metals in industrial ash

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Comparative studies of industrial fly ash from coal and biomass co-combustion (50%: mixture of sunflower pellets, wood chips, and straw briquettes) and coal ash were conducted. The functional speciation of metals (Pb, Cd, Zn, Cu) and mobility of chemical fractions of ash (soluble in water, exchangeable, soluble in acids pH5, oxide, pseudosulfide, residual) were carried out with a 6-stage sequential extraction and singlestage mineralization methods. It was found that the addition of biomass to coal results in ash containing more Zn, a decrease in the content of Cd, and no major changes in total content of Pb and Cu. A mixture of sunflower pellets, wood chips, and straw briquettes added to coal as biomass results in an increase of the ash fractions: exchangeable (Pb), pseudosulfide (Pb, Cu), oxide and residual (Zn), reduction in ash fractions: soluble in acid pH5 (Pb, Cd, Zn), oxide (Cu), pseudosulfide (Zn), residual (Cd). Biomass co-combusted with coal (50/50 m/m) improves the ash by reduction of the environmental mobility of Pb, Cd and Zn, but does not cause major changes in the mobility of Cu in relation to coal ash.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

22

Numer

3

Opis fizyczny

p.741-747,fig.,ref.

Twórcy

  • Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstancow Warszawy Ave. 6, 35-959 Rzeszów, Poland
autor
  • Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstancow Warszawy Ave. 6, 35-959 Rzeszów, Poland

Bibliografia

  • 1. KOUKOUZAS N., WARD C.R., PAPANIKOLAOU D., LI Z., KETIKIDIS C. Quantitative evaluation of minerals in fly ashes of biomass, coal and biomass-coal mixture derived from circulating fluidised bed combustion technology. J. Hazard. Mater. 169, 100, 2009.
  • 2. WIGLEY F., WILLIAMSON J., MALMGREN A., RILEY G. Ash deposition at higher levels of coal replacement by biomass. Fuel Process. Technol. 88, 1148, 2007.
  • 3. HAYNES R.J. Reclamation and revegetation of fly ash disposal sites – Challenges and research Leeds. J. Environ. Manage. 90, 43, 2009.
  • 4. Statistical Yearbook (Poland), Environmental protection, Central Statistical Office of Poland, Warsaw 2009 [In Polish].
  • 5. GRAMMELIS P., SKODRAS G., KAKARAS E. Effects of biomass co-firing with coal on ash properties. Part I: Characterisation and PSD. Fuel 85, 2310, 2006.
  • 6. SHAHEEN S.M., TSADILAS C.D. Influence of Fly Ash and Sewage Sludge Application on Cadmium and Lead Sorption by an Acidic Alfisol. Pedosphere 20, (4), 436, 2010.
  • 7. LIAO S.W., LIN C.I., WANG L.H. Kinetic study on lead(II) ion removal by adsorption onto peanut hull ash. J. Taiwan Inst. Chem. E. 42, 166, 2011.
  • 8. MEAWAD A.S., BOJINOVA D.Y., PELOVSKI Y.G. An overview of metals recovery from thermal power plant solid wastes. Waste Manage. 30, 2548, 2010.
  • 9. GRAMMELIS P., SKODRAS G., KAKARAS E., KARANGELOS D.J., PETROPOULOS N.P., ANAGNOSTAKIS M.J., HINIS E.P., SIMOPOULOS S.E. Effects of biomass co-firing with coal on ash properties. Part II: Leaching, toxicity and radiological behavior. Fuel 85, 2316, 2006.
  • 10. RAM L.C., MASTO R.E. An appraisal of the potential use of fly ash for reclaiming coal mine spoil. J. Environ. Manage. 91, 603, 2010.
  • 11. PANDEY V.C., SINGH N. Impact of fly ash incorporation in soil systems. Agr. Ecosystems Environ. 136, 16, 2010.
  • 12. JOHNSON A., CATALAN L.J.J., KINRADE S.D. Characterization and evaluation of fly-ash from co-combustion of lignite and wood pellets for use as cement admixture. Fuel 89, 3042, 2010.
  • 13. AHMARUZZAMAN M. A review on the utilization of fly ash. Prog. Energ Combust. 36, 327, 2010.
  • 14. PANDEY V.C., ABHILASH P.C., SINGH N. The Indian perspective of utilizing fly ash in phytoremediation, phytomanagement and biomass production. J. Environ. Manage. 90, 2943, 2009.
  • 15. REIJNDERS L. Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials: A review. Build. Environ. 42, 1036, 2007.
  • 16. REIJNDERS L. Disposal, uses and treatments of combustion ashes: a review. Resour. Conserv. Recy. 43, 313, 2005.
  • 17. ONISEI S., PONTIKES Y., VAN GERVEN T., ANGELOPOULOS G.N., VELEA T., PREDICA V., MOLDOVAN P. Synthesis of inorganic polymers using fly ash and primary lead slag. J. Hazard. Mater. 205, 101, 2012.
  • 18. DONG Y., HAMPSHIRE S., ZHOU J., LIN B., JI Z., ZHANG X., MENG G. Recycling of fly ash for preparing porous mullite membrane supports with titania addition. J. Hazard. Mater. 180, 173, 2010.
  • 19. SYC M., POHORELY M., KAMENIKOVA P., HABART J., SVOBODA K., PUNCOCHAR M., Willow trees from heavy metals phytoextraction as energy crops, Biomass Bioenerg. 37, 106, 2012.
  • 20. TESSIER A., CAMPBELL P.G.C., BISSON M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Anal. Chem. 51, 844, 1979.
  • 21. OSTROWSKA A., GAWLIŃSKI S., SZCZUBIAŁKA Z. Methods of Analysis and evaluation of soil and plant properties. Catalogue of the Institute of Environment Protection, Warsaw, pp.109, 1991 [In Polish].

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8ccc31ab-20a9-44a3-b8dd-82c198a9c06b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.