PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 78 | 2 |

Tytuł artykułu

Fos immunoreactivity in the intermediolateral nucleus induced by tendon vibration of the m. triceps surae in rats pretreated with a nitric oxide blocker or precursor

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We investigated neuronal activation of the rat intermediolateral (IML) nucleus of the thoracolumbar spinal cord, initiated by Achilles tendon vibration, after intramuscular (m. triceps surae) administration of 7‑nitroindazole (7‑NI) or L‑arginine (LA). The spindle afferent response to vibratory stimuli induced a distinct bilateral increase in the activation of c‑Fos immunoreactivity in the spinal neurons in three groups of rats (tendon‑vibrated, tendon‑vibrated + 7‑NI and tendon‑vibrated + LA). The T5/T13 segments in tendon‑vibrated +7‑NI animals showed the highest increase of Fos‑immunoreactive neurons. This increase was two times higher than that in tendon only‑vibrated control rats and tendon‑vibrated + LA animals. The highest mean number of labelled neurons were observed in the IML nucleus and in layers 4 and 7 of the T5-L3 segments in tendon‑vibrated and tendon‑vibrated + 7‑NI animals, and in the IML nucleus and layer 4 in tendon‑vibrated + LA rats. The highest mean number of activated neurons was found ipsilaterally in the IML nucleus of the T5/T13 segment. These results indicate that decreased nitric oxide release after injection of 7‑NI was accompanied by a potentiation of the early c‑fos gene expression induced by muscle proprioceptive activity within the thoracolumbar region of the rat spinal cord. Thus, enhanced c‑Fos immunoreactivity in the IML nucleus indicated that the sympathetic nervous system can exert a direct influence on the muscle spindles

Słowa kluczowe

Wydawca

-

Rocznik

Tom

78

Numer

2

Opis fizyczny

p.82-91,fig.,ref.

Twórcy

  • University of Physical Education and Sport, Gdansk, Poland
  • Department of Movement Physiology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
  • Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
autor
  • Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
  • Laboratory of Experimental Neurophysiology, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
autor
  • Laboratory of Experimental Neurophysiology, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • Laboratory of Experimental Neurophysiology, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
autor
  • University of Physical Education and Sport, Gdansk, Poland
  • Department of Movement Physiology, Bogomoletz Institute of Physiology, Kyiv, Ukraine

Bibliografia

  • Abercrombie M (1946) Estimation of nuclear population from microtome section. Anat Res 94: 239–247.
  • Ahn SN, Guu JJ, Tobin AJ, Edgerton VR, Tillakaratne NJ (2006) Use of c‑fos to identify activity‑dependent spinal neurons after stepping in intact adult rats. Spinal Cord 44: 547–559.
  • Anderson CR, McLachlan EM, Srb‑Christie O (1989) Distribution of sympa‑ thetic preganglionic neurons and monoaminergic nerve terminals in the spinal cord of the rat. J Comp Neurol 283: 269–284.
  • Andrade FH, Reid MB, Allen DG, Westerblad H (1998) Effect of nitric ox‑ ide on single skeletal muscle fibres from the mouse. J  Physiol 509: 577–586.
  • Bannatyne BA, Edgley SA, Hammar I, Jankowska E, Maxwell DJ (2006) Differ‑ ential projections of excitatory and inhibitory dorsal horn interneurons relaying information from group II muscle afferents in the cat spinal cord. J Neurosci 26: 2871–2880.
  • Bove M, Nardone A, Schieppati M (2003) Effects of leg muscle tendon vibra‑ tion on group Ia and group II reflex responses to stance perturbation in humans. J Physiol 550: 617–630.
  • Cabot JB, Alessi V, Carroll J, Ligorio M (1994) Spinal cord lamina V and lam‑ ina VII interneuronal projections to sympathetic preganglionic neurons. J Comp Neurol 347: 515–530.
  • Carroll TJ, Herbert RD, Munn J, Lee M, Gandevia SC (2006) Contralateral ef‑ fects of unilateral strength training: evidence and possible mechanisms. J Appl Physiol 101: 1514–1522.
  • Chapman V, Buritova J, Honore P, Besson JM (1995) 7‑Nitroindazole, a se‑ lective inhibitor of neuronal nitric oxide synthase, reduces formalin evoked c‑Fos expression in dorsal horn neurons of the rat spinal cord. Brain Res 697: 258–261.
  • Cordo PJ, Horn JL, Künster D, Cherry A, Bratt A, Gurfinkel V (2011) Contri‑ butions of skin and muscle afferent input to movement sense in the human hand. J Neurophysiol 105: 1879–1888.
  • De‑Doncker  L, Picquet F, Petit J, Falempin  M (2003) Characterization of spindle afferents in rat soleus muscle using ramp‑and‑hold and sinusoi‑ dal stretches. J Neurophysiol 89: 442–449.
  • Eu JP, Hare JM, Hess DT, Skaf  M, Sun J, Cardenas‑Navina I, Sun QA, Dewhirst M, Meissner G, Stamler JS (2003) Concerted regulation of skel‑ etal muscle contractility by oxygen tension and endogenous nitric oxide. Proc Natl Acad Sci 100: 15229–15234.
  • Fallon JB, Macefield VG (2007) Vibration sensitivity of human muscle spin‑ dles and Golgi tendon organs. Muscle Nerve 36: 21–29.
  • Grassi C, Deriu F, Passatore M (1993) Effect of sympathetic nervous sys‑ tem activation on the tonic vibration reflex in rabbit jaw closing muscles. J Physiol 469: 601–613.
  • Grozdanovic Z, Baumgarten HG (1999) Nitric oxide synthase in skeletal muscle fibers: a  signaling component of the dystrophin‑glycoprotein complex. Histol Histopathol 14: 243–256.
  • Herdegen T, Leah JD (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Rev 28: 370–490.
  • Hsu S‑M, Raine L, Fanger H (1981) Use of avidin‑biotin‑peroxidase complex (ABC) in immunoperoxidase techniques: a  comparison between ABC and unlabelled antibody (PAP) procedures. J Histochem Cytochem 29: 577–580.
  • Johnson MD, Ma PM (1993) Localization of NADPH diaphorase activity in monoaminergic neurons of the rat brain. J Comp Neurol 332: 391–406.
  • Joshi S, Levatte MA, Dekaban GA, Weaver LC (1995) Identification of spinal interneurons antecedent to adrenal sympathetic preganglionic neurons using transsynaptic transport of herpes simplex virus type 1. Neurosci‑ ence 65: 893–903.
  • Kawabata A, Umeda N, Takagi H (1993) L‑Arginine exerts a dual role in no‑ ciceptive processing in the brain: involvement of the kyotorphin‑Met‑en‑ kephalin pathway and NO‑cyclic GMP pathway. Br J Pharmacol 109: 73–79.
  • King‑Vanvlack CE, Curtis SE, Mewburn JD, Cain SM, Chapler CK (1995) Role of endothelial factors in active hyperemic responses in contracting ca‑ nine muscle. J Appl Physiol 79: 107–112.
  • Krukoff TL (1999) Central actions of nitric oxide in regulation of autonomic functions. Brain Res Rev 30: 52–65.
  • Kuan LI, Wen‑Xiu QI (2010) Effects of multiple intrathecal administration of L‑arginine with different doses on formalin‑induced nociceptive behav‑ ioral responses in rats. Neurosci Bull 26: 211–218.
  • Kuypers HG (1982) A new look at the organization of the motor system. Prog Brain Res 57: 381–403.
  • Man’kovskaya YP, Maisky VA, Vlasenko OV, Maznychenko AV (2014) 7‑Ni‑ troindazole enhances c‑Fos expression in spinal neurons in rats realiz‑ ing operant movements. Acta Histochem 116: 1427–1433.
  • Maréchal G, Beckers‑Bleukx G (1998) Effect of nitric oxide on the maximal ve‑ locity of shortening of a mouse skeletal muscle. Pflugers Arch 436: 906–913.
  • Maršala J, Lukáčová N, Čízková D, Lukáč I, Kuchárová K, Maršala M (2004) Premotor nitric oxide synthase immunoreactive pathway connecting lumbar segments with the ventral motor nucleus of the cervical enlarge‑ ment in the dog. J Chem Neuroanat 27: 43–54.
  • Maršala J, Lukáčová N, Kolesár D, Kuchárová K, Maršala M (2006) Nitrergic proprioceptive afferents originating from quadriceps femoris muscle are related to monosynaptic Ia‑motoneuron stretch reflex circuit in the dog. Cell Mol Neurobiol 26: 1387–1412.
  • Matsumura N, Kikuchi‑Utsumi K, Nakaki T (2008) Activities of 7‑Nitroinda‑ zole and 1‑(2‑(Trifluoromethylphenyl)‑imidazole Independent of neuro‑ nal Nitric‑Oxide Synthase Inhibition. J Pharmacol Exp Ther 325: 357–362.
  • Maznychenko AV (2014) Changes in the gene c‑fos expression in the rat spinal cord after suppression of activity of the cerebral monoaminergic systems. Neurophysiology 46: 461–470.
  • Musienko P, van den Brand R, Märzendorfer O, Roy RR, Gerasimenko Y, Edgerton VR, Courtine G (2011) Controlling specific locomotor behaviors through multidimensional monoaminergic modulation of spinal circuit‑ ries. J Neurosci 31: 9264–9278.
  • McLean DL, Sillar KT (2002) Nitric oxide selectively tunes inhibitory synaps‑ es to modulate vertebrate locomotion. J Neurosci 22: 4175–4184.
  • McLean DL, Sillar KT (2004) Metamodulation of a spinal locomotor network by nitric oxide. J Neurosci 24: 9561–9571.
  • Passatore M, Grassi C, Filippi GM (1985) Sympathetically‑induced develop‑ ment of tension in jaw muscles: the possible contraction of intrafusal muscle fibres. Pflügers Arch 405: 297–304.
  • Paxinos G, Watson C (1997) The Rat Brain in Stereotaxic Coordinates. Aca‑ demic Press, San Diego. Petras JM, Cummings JF (1972) Autonomic neurons in the spinal cord of the rhesus monkey: a correlation of the findings of cytoarchitectonics and sympathectomy with fiber degeneration following dorsal rhizotomy. J Comp Neurol 146: 189–218.
  • Pilyavskii AI, Maisky VA, Kalezic I, Ljubisavljevic  M, Kostyukov AI, Windhorst U, Johansson H (2001) c‑fos expression and NADPH‑diapho‑ rase reactivity in spinal neurons after fatiguing stimulation of hindlimb muscles in the rat. Brain Res 923: 91–102.
  • Pilyavskii AI, Maisky VA, Maznychenko AV, Kostyukov AI (2012) 7‑nitroinda‑ zole potentiates c‑fos expression induced by muscle tendon vibration in the spinal cord. Muscle Nerve 45: 597–602.
  • Proske U, Wise AK, Gregory JE (2000) The role of muscle receptors in the detection of movements. Prog Neurobiol 60: 85–96. Rando TA, Bowers CW, Zigmond RE (1981) Localization of neurons in the rat spinal cord which project to the superior cervical ganglion. J Comp Neurol 196: 73–83.
  • Roatta S, Windhorst U, Ljubisavljevic M, Johansson H, Passatore M (2002) Sympathetic modulation of muscle spindle afferent sensitivity to stretch to stretch in rabbit jaw closing muscles. J Physiol 540: 237–248.
  • Roatta S, Windhorst U, Djupsjöbacka M. Lytvynenko S. Passatore M (2005) Effects of sympathetic stimulation on the rhythmical jaw movements produced by electrical stimulation of the cortical masticatory areas of rabbits. Exp Brain Res 162: 14–22.
  • Rothe F, Langnaese K, Wolf G (2005) New aspects of the location of neu‑ ronal nitric oxide synthase in the skeletal muscle: a light and electron microscopic study. Nitric Oxide 13: 21–35.
  • Sah P, McLachlan EM (1995) Membrane properties and synaptic potentials in rat sympathetic preganglionic neurons studied in horizontal spinal cord slices in vitro. J Auton Nerv Syst 53: 1–15. Saito S, Kidd GJ, Trapp BD, Dawson TM, Bredt DS, Wilson DA, Traystman RJ, Snyder SH,
  • Hanley DF (1994) Rat spinal cord neurons contain nitric oxide synthase. Neuroscience 59: 447–456.
  • Schramm LP (2006) Spinal sympathetic interneurons: their identification and roles after spinal cord injury. Prog Brain Res 152: 27–37.
  • Spike RC, Todd AJ, Johnston HM (1993) Coexistence of NADPH‑diaphorase with GABA, glycine, and acetylcholine in rat spinal cord. J Comp Neurol 335: 320–333.
  • Tanabe M, Nagatani Y, Saitoh K, Takasu K, Ono H (2009) Pharmacological as‑ sessments of nitric oxide synthase isoforms and downstream diversity of NO signaling in the maintenance of thermal and mechanical hypersensitiv‑ ity after peripheral nerve injury in mice. Neuropharmacology 56: 702–708.
  • Vlasenko OV, Man’kovskaya YeP, Maznichenko AV, Piliavskii AI, Maiskii VA (2013) Fos immunoreactivity in the motor cortex of rats realizing oper‑ ant movements: changes after systemic introduction of a NOS blocker. Neurophysiology 45: 79–83.
  • Windhorst U (2007) Muscle proprioceptive feedback and spinal networks. Brain Res Bull 73: 155–202.
  • Wu G, Morris SM (1998) Arginine metabolism: nitric oxide and beyond. Bio‑ chem J 336: 1–17.
  • Zimmerman A, Hochman S (2010) Heterogeneity of membrane properties in sympathetic preganglionic neurons of neonatal mice: evidence of four sub‑ populations in the intermediolateral nucleus. J Neurophysiol 103: 490–498.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8cbf416e-66a0-4766-baf0-7e86f60d7565
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.