PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 74 | 2 |

Tytuł artykułu

Early increase of cannabinoid receptor density after experimental traumatic brain injury in the newborn piglet

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Paediatric traumatic brain injury (TBI) is a leading cause of death and disability. Previous studies showed neuroprotection after TBI by (endo)cannabinoid mechanisms, suggesting involvement of cannabinoid receptors (CBR). We therefore determined CBR densities and expression of the translocator protein 18 kDA (TSPO) in newborn piglets after experimental TBI. Newborn female piglets were subjected to sham operation (n=6) or fluid-percussion (FP) injury (n=7) under controlled physiological conditions. After six hours, brains were frozen, sagittally cut and incubated with radioligands for CBR ([3HCP- 55,940, [3H]SR141716A) and TSPO ([3H]PK11195), an indicator of gliosis/brain injury. Early after injury, FP-TBI elicited a significant ICP increase at a temporary reduced cerebral perfusion pressure; however, CBF and CMRO2 remained within physiological range. At 6 hours post injury, we found a statistically significant increase in binding of the non-selective agonist [3H]CP-55,940 in 15 of the 24 investigated brain regions of injured animals. By contrast, no significant changes in binding of the CB1R-selective antagonist [3H]SR141716A were observed. A non-significant trend towards increased binding of [3H]PK11195 was observed, suggesting an incipient microglial activation.We therefore conclude that in this model and time span after injury, the increase in [3H]CP-55,940 binding reflects changes in CB2R density, while CB1R density is not affected. The results may provide explanation for the neuroprotective properties of cannabinoid ligands and future therapeutic strategies of TBI.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

74

Numer

2

Opis fizyczny

p.197-210,fig.,ref.

Twórcy

autor
  • Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany
autor
  • Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany
autor
  • Heinrich Braun Hospital, Zwickau, Germany
  • Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany
autor
  • Department of Pathology, Helios-Klinikum Erfurt, Erfurt, Germany
autor
  • Institute of Molecular Cell Biology and Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
autor
  • Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany

Bibliografia

  • Amenta PS, Jallo JI, Tuma RF, Elliott MB (2012) A can¬nabinoid type 2 receptor agonist attenuates blood-brain barrier damage and neurodegeneration in a murine model of traumatic brain injury. J Neurosci Res 90: 2293-2305.
  • Anderson V, Catroppa C, Morse S, Haritou F, Rosenfeld J (2005) Functional plasticity or vulnerability after early brain injury? Pediatrics 116: 1374-1382.
  • Anderson V, Catroppa C, Morse S, Haritou F, Rosenfeld JV (2009) Intellectual outcome from preschool traumatic brain injury: a 5-year prospective, longitudinal study. Pediatrics 124: e1064-1071.
  • Ashton JC, Glass M (2007) The cannabinoid CB2 receptor as a target for inflammation-dependent neurodegenera¬tion. Curr Neuropharmacol 5: 73-80.
  • Babikian T, Marion SD, Copeland S, Alger JR, O'Neill J, Cazalis F, Mink R, Giza CC, Vu JA, Hilleary SM, Kernan CL, Newman N, Asarnow RF (2010) Metabolic levels in the corpus callosum and their structural and behavioral correlates after moderate to severe pediatric TBI. J Neurotrauma 27: 473-481.
  • Bahr BA, Karanian DA, Makanji SS, Makriyannis A (2005) Targeting the endocannabinoid system in treat¬ing brain disorders. Expert Opin Investig Drugs 15: 351-365.
  • Barlow KM, Thomson E, Johnson D, Minns RA (2005) Late neurologic and cognitive sequelae of inflicted traumatic brain injury in infancy. Pediatrics 116: e174-185.
  • Bauer R, Fritz H (2004) Pathophysiology of traumatic injury in the developing brain: an introduction and short update. Exp Toxicol Pathol 56: 65-73.
  • Bayir H, Kochanek PM, Kagan VE (2006) Oxidative stress in immature brain after traumatic brain injury. Dev Neurosci 28: 420-431.
  • Bayly PV, Clayton EH, Genin GM (2012) Quantitative imaging methods for the development and validation of brain biomechanics models. Annu Rev Biomed Eng 14: 369-396.
  • Capettini LS, Savergnini SQ, da Silva RF, Stergiopulos N, Santos RA, Mach F, Montecucco F (2012) Update on the role of cannabinoid receptors after ischemic stroke. Mediators Inflamm 2012: 824093.
  • Cederberg D, Siesjo P (2010) What has inflammation to do with traumatic brain injury? Childs Nerv Syst 26: 221-226.
  • Chen MK, Guilarte TR (2008) Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther 118: 1-17.
  • Cloots RJ, Gervaise HM, van Dommelen JA, Geers MG (2008) Biomechanics of traumatic brain injury: influenc¬es of the morphologic heterogeneities of the cerebral cortex. Ann Biomed Eng 36: 1203-1215.
  • Cohen-Yeshurun A, Trembovler V, Alexandrovich A, Ryberg E, Greasley PJ, Mechoulam R, Shohami E, Leker RR (2011) N-arachidonoyl-L-serine is neuroprotective after traumatic brain injury by reducing apoptosis. J Cereb Blood Flow Metab 31: 1768-1777.
  • Cosenza-Nashat M, Zhao ML, Suh HS, Morgan J, Natividad R, Morgello S, Lee SC (2009) Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol 35: 306-328.
  • Coyle MG, Oh W, Stonestreet BS (1993) Effects of indo- methacin on brain blood flow and cerebral metabolism in hypoxic newborn piglets. Am J Physiol 264: H141-149.
  • Cumming P, Pedersen MD, Minuzzi L, Mezzomo K, Danielsen EH, Iversen P, Aagaard D, Keiding S, Munk OL, Finsen B (2006) Distribution of PK11195 binding sites in porcine brain studied by autoradiography in vitro and by positron emission tomography. Synapse 59: 418-426.
  • Donat CK, Walter B, Deuther-Conrad W, Wenzel B, Nieber K, Bauer R, Brust P (2010a) Alterations of cholinergic receptors and the vesicular acetylcholine transporter after lateral fluid percussion injury in newborn piglets. Neuropathol Appl Neurobiol 36: 225-236.
  • Donat CK, Walter B, Kayser T, Deuther-Conrad W, Schliebs R, Nieber K, Bauer R, Hartig W, Brust P (2010b) Effects of lateral fluid percussion injury on cholinergic markers in the newborn piglet brain. Int J Dev Neurosci 28: 31-38.
  • Eisenhauer CL, Matsuda LS, Uyehara CF (1994) Normal physi¬ologic values of neonatal pigs and the effects of isoflurane and pentobarbital anesthesia. Lab Anim Sci 44: 245-252.
  • Elliott MB, Tuma RF, Amenta PS, Barbe MF, Jallo JI (2011) Acute effects of a selective cannabinoid-2 receptor ago¬nist on neuroinflammation in a model of traumatic brain injury. J Neurotrauma 28: 973-981.
  • Felder CC, Veluz JS, Williams HL, Briley EM, Matsuda LA (1992) Cannabinoid agonists stimulate both receptor- and non-receptor-mediated signal transduction pathways in cells transfected with and expressing cannabinoid recep¬tor clones. Mol Pharmacol 42: 838-845.
  • Felix B, Leger ME, Albe-Fessard D, Marcilloux JC, RampinO, Laplace JP (1999) Stereotaxic atlas of the pig brain. Brain Res Bull 49: 1-137.
  • Feng Y, Clayton EH, Chang Y, Okamoto RJ, Bayly PV (2013) Viscoelastic properties of the ferret brain mea¬sured in vivo at multiple frequencies by magnetic reso¬nance elastography. J Biomech 46: 863-870.
  • Finnie JW (2012) Comparative approach to understanding traumatic injury in the immature, postnatal brain of domestic animals. Aust Vet J 90: 301-307.
  • Finnie JW (2013) Neuroinflammation: beneficial and detri¬mental effects after traumatic brain injury. Inflammopharmacology 21: 309-320.
  • Firsching R, Piek J, Skalej M, Rohde V, Schmidt U, Striggow F, Group KNS (2012) Early survival of comatose patients after severe traumatic brain injury with the dual cannabi- noid CB1/CB2 receptor agonist KN38-7271: a random¬ized, double-blind, placebo-controlled phase II trial. J Neurol Surg A Cent Eur Neurosurg 73: 204-216.
  • Gallyas F (1979) Silver staining of myelin by means of physical development. Neurol Res 1: 203-209.
  • Giza CC, Mink RB, Madikians A (2007) Pediatric traumatic brain injury: not just little adults. Curr Opin Crit Care 13: 143-152.
  • Glass M, Dragunow M, Faull RL (1997) Cannabinoid recep¬tors in the human brain: a detailed anatomical and quan¬titative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 77: 299-318.
  • Gorrie C, Oakes S, Duflou J, Blumbergs P, Waite PM (2002) Axonal injury in children after motor vehicle crashes: extent, distribution, and size of axonal swellings using beta-APP immunohistochemistry. J Neurotrauma 19: 1171-1182.
  • Graham DI, Raghupathi R, Saatman KE, Meaney D, McIntosh TK (2000) Tissue tears in the white matter after lateral fluid percussion brain injury in the rat: relevance to human brain injury. Acta Neuropathol 99: 117-124.
  • Harkany T, Dobszay MB, Cayetanot F, Hartig W, Siegemund T, Aujard F, Mackie K (2005) Redistribution of CB1 can-nabinoid receptors during evolution of cholinergic basal forebrain territories and their cortical projection areas: a comparison between the gray mouse lemur (Microcebus murinus, primates) and rat. Neuroscience 135: 595-609.
  • Helmy A, De Simoni MG, Guilfoyle MR, Carpenter KL, Hutchinson PJ (2011) Cytokines and innate inflammation in the pathogenesis of human traumatic brain injury. Prog Neurobiol 95: 352-372.
  • Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, Rice KC (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A 87: 1932-1936.
  • Herkenham M (1991) Characterization and localization of cannabinoid receptors in brain: an in vitro technique using slide-mounted tissue sections. NIDA Res Monogr 112: 129-145.
  • Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11: 563-583.
  • Hicks RR, Baldwin SA, Scheff SW (1997) Serum extravasa¬tion and cytoskeletal alterations following traumatic brain injury in rats. Comparison of lateral fluid percussion and cortical impact models. Mol Chem Neuropathol 32: 1-16.
  • Hoffmeister PG, Donat CK, Schuhmann MU, Voigt C, Walter B, Nieber K, Meixensberger J, Bauer R, Brust P (2011) Traumatic brain injury elicits similar alterations in alpha7 nicotinic receptor density in two different experi¬mental models. Neuromolecular Med 13: 44-53.
  • Hohmann AG, Herkenham M (1999) Cannabinoid receptors undergo axonal flow in sensory nerves. Neuroscience 92: 1171-1175.
  • Horvath B, Magid L, Mukhopadhyay P, Batkai S, Rajesh M, Park O, Tanchian G, Gao RY, Goodfellow CE, Glass M, Mechoulam R, Pacher P (2012) A new cannabinoid CB2 receptor agonist HU-910 attenuates oxidative stress, inflammation and cell death associated with hepatic ischaemia/reperfusion injury. Br J Pharmacol 165: 2462¬2478.
  • Jankowitz BT, Adelson PD (2006) Pediatric traumatic brain injury: past, present and future. Dev Neurosci 28: 264¬275.
  • Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87: 779-789.
  • Karlstetter M, Nothdurfter C, Aslanidis A, Moeller K, Horn F, Scholz R, Neumann H, Weber BH, Rupprecht R, Langmann T (2014) Translocator protein (18 kDa) (TSPO) is expressed in reactive retinal microglia and modulates microglial inflammation and phagocytosis. J Neuroinflammation 11: 3.
  • Keenan HT, Bratton SL (2006) Epidemiology and outcomes of pediatric traumatic brain injury. Dev Neurosci 28: 256-263.
  • Kennard MA (1942) Cortical reorganization of motor func¬tion: studies on a series of mon-keys of various ages from infancy to maturity. Arch Neurol Psychiatry 48: 227-240.
  • Kochanek PM (2006) Pediatric traumatic brain injury: quo vadis? Developmental neuroscience 28: 244-255.
  • LaPlaca MC, Simon CM, Prado GR, Cullen DK (2007) CNS injury biomechanics and experimental models. Prog Brain Res 161: 13-26.
  • Leclercq PD, McKenzie JE, Graham DI, Gentleman SM (2001) Axonal injury is accentuated in the caudal corpus callosum of head-injured patients. J Neurotrauma 18: 1-9.
  • Li L, Liu J (2013) The effect of pediatric traumatic brain injury on behavioral outcomes: a systematic review. Dev Med Child Neurol 55: 37-45.
  • Li LM, Menon DK, Janowitz T (2014) Cross-sectional analysis of data from the U.S. clinical trials database reveals poor translational clinical trial effort for traumatic brain injury, compared with stroke. PLoS One 9: e84336.
  • Lopez-Rodriguez AB, Siopi E, Finn DP, Marchand-Leroux C, Garcia-Segura LM, Jafarian-Tehrani M, Viveros MP (2013) CB1 and CB2 cannabinoid receptor antagonists prevent minocycline-induced neuroprotection following traumatic brain injury in mice. Cereb Cortex [Epub ahead of print].
  • Luo P, Fei F, Zhang L, Qu Y, Fei Z (2011) The role of gluta¬mate receptors in traumatic brain injury: Implications for postsynaptic density in pathophysiology. Brain Res Bull 85: 313-320.
  • Makowski EL, Meschia G, Droegemueller W, Battaglia FC (1968) Measurement of umbilical arterial blood flow to the sheep placenta and fetus in utero. Distribution to coty¬ledons and the intercotyledonary chorion. Circ Res 23: 623-631.
  • Maresz K, Carrier EJ, Ponomarev ED, Hillard CJ, Dittel BN (2005) Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuli. J Neurochem 95: 437-445.
  • Masel BE, DeWitt DS (2010) Traumatic brain injury: a dis¬ease process, not an event. J Neurotrauma 27: 1529¬1540.
  • Mauler F, Hinz V, Augstein KH, Fassbender M, Horvath E (2003) Neuroprotective and brain edema-reducing effi¬cacy of the novel cannabinoid receptor agonist BAY 38-7271. Brain Res 989: 99-111.
  • McConeghy KW, Hatton J, Hughes L, Cook AM (2012) A review of neuroprotection pharmacology and therapies in patients with acute traumatic brain injury. CNS Drugs 26: 613-636.
  • McPartland JM, Glass M, Pertwee RG (2007) Meta-analysis of cannabinoid ligand binding affinity and receptor distri¬bution: interspecies differences. Br J Pharmacol 152: 583-593.
  • Miller LK, Devi LA (2011) The highs and lows of cannabi- noid receptor expression in disease: mechanisms and their therapeutic implications. Pharmacol Rev 63: 461¬470.
  • Panikashvili D, Simeonidou C, Ben-Shabat S, Hanus L, Breuer A, Mechoulam R, Shohami E (2001) An endoge¬nous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413: 527-531.
  • Papadopoulos V, Lecanu L (2009) Translocator protein (18 kDa) TSPO: an emerging therapeutic target in neurotrau¬ma. Exp Neurol 219: 53-57.
  • Pazos MR, Mohammed N, Lafuente H, Santos M, Martinez- Pinilla E, Moreno E, Valdizan E, Romero J, Pazos A, Franco R, Hillard CJ, Alvarez FJ, Martinez-Orgado J (2013) Mechanisms of cannabidiol neuroprotection in hypoxic-ischemic newborn pigs: role of 5HT(1A) and CB2 receptors. Neuropharmacology 71: 282-291.
  • Pertwee RG (2000) Cannabinoid receptor ligands: clinical and neuropharmacological considerations, relevant to future drug discovery and development. Expert Opin Investig Drugs 9: 1553-1571.
  • Rinaldi-Carmona M, Barth F, Heaulme M, Shire D, Calandra B, Congy C, Martinez S, Maruani J, Neliat G, Caput D, et al. (1994) SR141716A, a potent and selective antago¬nist of the brain cannabinoid receptor. FEBS Lett 350: 240-244.
  • Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ (2007) The orphan receptor GPR55 is a novel cannabi¬noid receptor. Br J Pharmacol 152: 1092-1101.
  • Saatman KE, Graham DI, McIntosh TK (1998) The neu¬ronal cytoskeleton is at risk after mild and moderate brain injury. J Neurotrauma 15: 1047-1058.
  • Sarne Y, Asaf F, Fishbein M, Gafni M, Keren O (2011) The dual neuroprotective-neurotoxic profile of cannabinoid drugs. Br J Pharmacol 163: 1391-1401.
  • Shohami E, Cohen-Yeshurun A, Magid L, Algali M, Mechoulam R (2011) Endocannabinoids and traumatic brain injury. Br J Pharmacol 163: 1402-1410.
  • Stone JR, Okonkwo DO, Dialo AO, Rubin DG, Mutlu LK, Povlishock JT, Helm GA (2004) Impaired axonal trans¬port and altered axolemmal permeability occur in distinct populations of damaged axons following traumatic brain injury. Exp Neurol 190: 59-69.
  • Sullivan HG, Martinez J, Becker DP, Miller JD, Griffith R, Wist AO (1976) Fluid-percussion model of mechanical brain injury in the cat. J Neurosurg 45: 521-534.
  • Taylor HG, Swartwout MD, Yeates KO, Walz NC, Stancin T, Wade SL (2008) Traumatic brain injury in young children: postacute effects on cognitive and school readiness skills. J Int Neuropsychol Soc 14: 734-745.
  • Tolias CM, Bullock MR (2004) Critical appraisal of neuro¬protection trials in head injury: what have we learned? NeuroRx 1: 71-79.
  • Walter B, Bauer R, Gaser E, Zwiener U (1997) Validation of the multiple colored microsphere technique for regional blood flow measurements in newborn piglets. Basic Res Cardiol 92: 191-200.
  • Weber JT (2004) Calcium homeostasis following traumatic neuronal injury. Curr Neurovasc Res 1: 151-171.
  • Westlake TM, Howlett AC, Bonner TI, Matsuda LA, Herkenham M (1994) Cannabinoid receptor binding and messenger RNA expression in human brain: an in vitro receptor autoradiography and in situ hybridiza¬tion histochemistry study of normal aged and Alzheimer's brains. Neuroscience 63: 637-652.
  • White R, Hiley CR (1998) The actions of the cannabi- noid receptor antagonist, SR 141716A, in the rat iso¬lated mesenteric artery. Br J Pharmacol 125: 689¬696.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8acb6238-c0b2-482c-a12b-df8cbc937273
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.