PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 55 | 1 |

Tytuł artykułu

Photoinduction of seed germination in Arabidopsis thaliana is modulated by phototropis

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Light exposure is an important environmental factor which breaks seed dormancy in many plant species. Phytochromes have been identified as playing a crucial role in perception of the light signal that releases seed germination in Arabidopsis. Phototropins (Phot1, Phot2) are blue/UV-photoreceptors in plants which mediate phototropic responses, chloroplast relocation, hypocotyl growth inhibition and stomata opening. We studied germination under different light conditions in Arabidopsis Phot1-null and Phot2-null mutants and in a double phot1phot2 mutant. Germination of single phot1 and phot2 mutants in darkness was much lower than in wildtype (WT) seeds, whereas double phot1phot2 mutant lacking both functional phototropins germinated at frequency comparable to WT seeds, irrespective of light and temperature conditions. Light treatment of imbibed seeds was essential for effective germination of phot1, irrespective of low-temperature conditioning. In contrast, cold stratification promoted dark germination of phot2 seeds after imbibition in dim light. Low germination frequency of phot1 seeds under low light intensity suggests that the presence of functional Phot1 might be crucial for effective germination at these conditions. The lower germination frequency of phot2 seeds under continuous light suggests that Phot2 might be responsible for stimulating germination of seeds exposed to direct daylight. Thus, the phototropin system may cooperate with phytochromes regulating the germination competence of seeds under different environmental conditions.

Wydawca

-

Rocznik

Tom

55

Numer

1

Opis fizyczny

p.67-72,fig.,ref.

Twórcy

autor
  • Department of Plant Physiology nd Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
  • Department of Plant Physiology nd Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
autor
  • Department of Plant Physiology nd Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
autor
  • Department of Plant Physiology nd Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland

Bibliografia

  • BAE G, and CHOI G. 2008. Decoding of light signals by plant phytochromes and their interacting proteins. AnnualReviews in Plant Biology 59: 281–311.
  • BRIGGS WR, and CHRISTIE JM. 2002. Phototropins 1 and 2: versatile plant blue-light receptors. Trends in Plant Science7: 204–210.
  • CASAL JJ, and SANCHEZ RA. 1998. Phytochromes and seed germination. Seed Science Research 8: 317–329.
  • CHRISTIE JM. 2007. Phototropin Blue-Light Receptors. Annual Reviews in Plant Biology 58: 21–45.
  • DEBLASIO SL, MULLEN JL, LUESSE DR, and HANGARTER RP. 2003. Phytochrome modulation of blue light-inducedchloroplast movements in Arabidopsis. Plant Physiology133: 1471–1479.
  • ELLIOTT RC, PLATTEN JD, WATSON JC, and REID JB. 2004. Phytochrome regulation of pea phototropin. Journal ofPlant Physiology 161: 265–270.
  • FINCH-SAVAGE WE, and LEUBNER-METZGER G. 2006. Seed dormancy and the control of germination. New Phytologist171: 501–523.
  • FOLTA KM, and SPALDING EP. 2001. Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolutionanalysis of blue light-mediated hypocotyl growth inhibition.The Plant Journal 26: 471–478.
  • FOLTA KM, and KAUFMAN LS. 2003. Phototropin 1 is required for high-fluence blue-light mediated mRNA destabilization. Plant Molecular Biology 51: 609–618.
  • FRANKLIN KA, LARNER VS, and WHITELAM GC. 2005. The signal transducing photoreceptors of plants. InternationalJournal of Developmental Biology 49: 653–664.
  • HENNIG L, STODDART WM, DIETERLE M, WHITELAM GC, and SCHAFER E. 2002. Phytochrome E controls light-inducedgermination of Arabidopsis. Plant Physiology 128:194–200.
  • HOLDSWORTH MJ, BENTSINK L, and SOPPE WJJ. 2008. Molecular networks regulating Arabidopsis seed maturation, afterripening,dormancy and germination. New Phytologist179: 1–21.
  • HUALA E, OELLER PW, LISCUM E, HAN IS, LARSEN E, and BRIGGS WR. 1997. Arabidopsis NPH1: a protein kinasewith a putative redox-sensing domain. Science 278:2120–2123.
  • JARILLO JA, GABRYŚ H, CAPEL J, ALONSO JM, ECKER JR, and CASHMORE AR. 2001. Phototropin-related NPL controlschloroplast relocation induced by blue light. Nature 410:952–954
  • JAEDICKE K, LICHTENTHÄLER AL, MEYBERG R, ZEIDLER M, and HUGHES J. 2012. A phytochrome-phototropin light signalingcomplex at the plasma membrane. Proceedings ofthe National Academy of Sciences USA 109:12231–12236.
  • KAGAWA T, and WADA M. 2000. Blue light-induced chloroplast relocation in Arabidopsis thaliana as analyzed by microbeam irradiation. Plant and Cell Physiology 41: 84–93.
  • KAGAWA T, SAKAI T, SUETSUGU N, OIKAWA K, ISHIGURO S, et.al. 2001. Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291: 2138–2141.
  • KANEGAE H, TAHIR M, SAVAZZINI F, YAMAMOTO K, YANO M, et.al. 2000. Rice NPH1 homologues, OsNPH1a and OsNPH1b, are differently photoregulated. Plant and Cell Physiology 41: 415–423.
  • KINOSHITA T, DOI M, SUETSUGU N, KAGAWA T, WADA M, and SHIMAZAKI K. 2001. phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414: 656–660.
  • LISCUM E, and BRIGGS W. 1995. Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. The Plant Cell 7: 473–485.
  • LUESSE DR, DEBLASIO SL, and HANGARTER RP. 2010. Integration of phot1, phot2, and PhyB signalling in light-induced chloroplast movements. Journal of Experimental Botany 61: 4387–4397.
  • MALEC P, YAHALOM A, and CHAMOVITZ DA. 2002. Identification of a light-regulated protein kinase activity from seedlings of Arabidopsis thaliana. Photochemistry and Photobiology 75: 178–183.
  • OH E, KIM J, PARK E, KIM JI, KANG CH, and CHOI G. 2004. PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana. The Plant Cell 16: 3045–3058.
  • PENFIELD S, JOSSE EM, KANNAGARA R, GILDAY AD, and HALLIDAY KJ, GRAHAM IA. 2005. Cold and light control seedgermination through the bHLH transcription factor SPATULA. Current Biology 15: 1998–2006.
  • SAKAI T, KAGAWA T, KASAHARA M, SWARTZ TE, CHRISTIE JM, et. al. 2001. Arabidopsis nph1 and npl1: blue light receptorsthat mediate both phototropism and chloroplast relocation.Proceedings of the National Academy of SciencesUSA 98: 6969–6974.
  • SAKAMOTO K, and BRIGGS WR. 2002. Cellular and subcellular localization of phototropin 1. The Plant Cell 14:1723–1735.
  • SHINOMURA T, NAGATANI A, HANZAWA H, KUBOTA M, WATANABE M, and FURUYA M. 1996. Action spectra for phytochrome AandB-specific photoinduction of seed germination inArabidopsis thaliana. Proceedings of the NationalAcademy of Sciences USA 93: 8129–8133.
  • SMITH H, and WHITELAM GC. 1990. Phytochrome, a family of photoreceptors with multiple physiological roles. PlantCell and Environment 13: 695–707.
  • TEPPERMAN JM, ZHU T, CHANG HS, WANG X, and QUAIL PH. 2001. Multiple transcription factor genes are early targetsof phytochrome A signaling. Proceedings of theNational Academy of Sciences USA 98: 9437–9442.

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8a945148-d179-4411-a087-6a682c8573f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.