PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 71 | 01 |

Tytuł artykułu

Nanomateriały w medycynie - właściwości ditlenku tytanu i perspektywy jego wykorzystania w terapii przeciwnowotworowej

Warianty tytułu

EN
Nanomaterials in medicine - properties of titanium dioxide and perspectives for its application in cancer therapy

Języki publikacji

PL

Abstrakty

EN
Every year, several millions of people all over the world are diagnosed with cancer. Despite the tremendous development of medical sciences, a remarkable number of people die due to late diagnosis or ineffective cancer therapy. Since most of the tumors are highly resistant to drugs, research for new effective therapy methods is continuing. Great expectations for a breakthrough in the fight against cancer are attributed to nanotechnology. A new interdisciplinary field of science dealing with the creation of nanoparticles (NPs) and nanomaterials (NMs) that are variously applied, e.g. in nanomedicine. NPs and NMs have gained an increased consideration in cancer therapy in recent years, performing as carriers of medicine, as well as photo- or sonosensitisers, compounds generating reactive oxygen species (ROS) formed by ultraviolet light (UV) excitation or ultrasound (US) activation, respectively. Targeted therapy is based upon the attachment of specific ligands or antibodies to nanoparticles. This process guarantees not only increased therapy efficiency, but it also lowers the cytoand genotoxicity of the active compound towards the healthy cells. Nano-sized titanium dioxide (nano-TiO2) presents an example of a substance with an increasing role in the eradication of tumor cells. Currently, studies are conducted to examine its application, i.e. in the cancer fighting photo- and sonodynamic therapies.

Wydawca

-

Rocznik

Tom

71

Numer

01

Opis fizyczny

s.18-23,rys.,bibliogr.

Twórcy

autor
  • Katedra Higieny Żywności i Ochrony Zdrowia Publicznego, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego, ul.Nowoursynowska 159, 02-776 Warszawa
  • Katedra Higieny Żywności i Ochrony Zdrowia Publicznego, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego, ul.Nowoursynowska 159, 02-776 Warszawa
autor
  • Katedra Higieny Żywności i Ochrony Zdrowia Publicznego, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego, ul.Nowoursynowska 159, 02-776 Warszawa

Bibliografia

  • 1.Abdulla-al-Mamun M., Kasumoto Y., Zannat T., Islam M. S.: Synergistic cell-killing by photocatalytic and plasmonic photothermal effects of Ag/TiO2 core-shell composite nanoclusters against human epithelial carcinoma (HeLa) cells. Appl. Catal. A 2011, 398, 134-142.
  • 2.Allen N. S., EdgeM., Verran J., Stratton J., Maltby J., Bygott C.: Photocatalytic titania based surfaces: environmental benefits. Polym. Degrad. Stab. 2008, 93, 1632-1646.
  • 3.Bystrzejewska B., Golimowski J., Urban P. L.: Nanoparticles: their potential toxicity, waste and environmental management. Waste Manage. 2009, 29, 2587-2595.
  • 4.Chihara Y., Fujimoto K., Kondo H., Moriwaka Y., Sasahira T., Hirao Y., Kuniyasu H.: Anti-tumor effects of liposome-encapsluated titanium dioxide in nude mice. Pathobiology 2007, 74, 353-358.
  • 5.Dowling A. P.: Development of nanotechnologies. Mater. Today 2004, 7, 30-35.
  • 6.Drexler K. E.: Nanosystems: molecular machinery, manufacturing and computation. New York: John Wiley and Sons 1992, s. 990-998.
  • 7.Ferin J., Oberdörster G.: Biological effects and toxicity assessment of titanium dioxides: anatase and rutile. Am. Ind. Hyg. Assoc. J. 1985, 46, 69-72.
  • 8.Feynman R. P.: There's plenty of room at the bottom. Eng. Sci. 1960, 23, 22-36.
  • 9.Foldvari M., Bagonluri M.: Carbon nanotubes as functional excipients for nanomedicines: I. Pharmaceutical properties. Nanomed. Nanotechnol. Biol. Med. 2008, 4, 173-182.
  • 10.Fujishima A., Cai R. X., Otsuki J., Hashimoto K., Iloth K., Yamashita T., Kubota Y.: Biochemical application of photoelectrochemistry: photokilling of malignant cells with TiO2 powder. Electrochim. Acta 1993, 38, 153-157.
  • 11.Fujishima A., Honda K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.
  • 12.Fujishima A., Rao T. N., Tryk D. A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 2000, 1, 1-21.
  • 13.FujitaK., HorieM., KatoH., Endoh S., SuzukiM., NakamuraA., Miyauchi A., Yamamoto K., Kinugasa S., Nishio K., Yoshida Y., Iwahashi H., Nakanishi J.: Effects of ultrafine TiO2 particles on gene expression profile in human kera-tinocytes without illumination: involvement of extracellular matrix and cell adhesion. Toxicol. Lett. 2009, 191, 109-117.
  • 14.Gogniat G., Dukan S.: TiO2 photocatalysis causes DNA damage via fenton reaction-generated hydroxyl radicals during the recovery period. Appl. Environ. Microbiol. 2007, 73, 7740-7743.
  • 15.Gómez-Couso H., Fontán-Saínz M., Sichel C., Fernández-Ibánez P., Ares-Mazás E.: Efficacy of the solar water disinfection method in turbid waters experimentally contaminated with Cryptosporidium parvum oocysts under real field conditions. Trop. Med. Int. Health 2009, 14, 620-627.
  • 16.Harada Y., OgawaK., Irie Y., EndoH., FerilL. B., Jr. Uemura T., TachibanaK.: Ultrasound activation of TiO2 in melanoma tumors. J. Control. Release. 2011, 149, 190-195.
  • 17.IARC monographs on the evaluation of carcinogenic risks to humans (vol. 93): carbon black, titanium dioxide and talc. France, Lyon 2010.
  • 18.ISO/TS 27687:2008 Nanotechnologies - terminology and definitions for nano-objects - nanoparticle, nanofibre and nanoplate.
  • 19.Jin C., Tang Y., Fan X. Y., Ye X. T., Li X. L., Tang K., Zhang Y. F., Li A. G., Yang Y. J.: In vivo evaluation of the interaction between titanium dioxide nanoparticle and rat liver DNA. Toxicol. Ind. Health 2013, 29, 235-244.
  • 20.Kim S., Ghafoor K., Lee J., Feng M., Hong J., Lee D. U., Park J.: Bacterial inactivation in water, DNA strand breaking, and membrane damage induced by ultraviolet-assisted titanium dioxide photocatalysis. Water Res. 2013, 47, 4403-4411.
  • 21.Kim S. Y., NishiokaM., TayaM.: Promoted proliferation of an SOD-deficient mutant of Escherichia coli under oxidative stress induced by photoexcited TiO2. FEMS Microbiol. Lett. 2004, 236, 109-114.
  • 22.Lagopati N., Kitsiou P. V., Kontos A. I., Venieratos P., Kotsopoulou E., Kontos A. G., DionysiouD. D., Pispas S., Tsilibary E. C., FalarasP.: Photo-induced treatment of breast epithelial cancer cells using nanostructured titanium dioxide solution. J. Photochem. Photobiol. A 2010, 214, 215-223.
  • 23.Lai T. Y., Lee W. C.: Killing of cancer cell line by photoexcitation of folic acid-modified titanium dioxide nanoparticles. J. Photochem. Photobiol. B 2009, 204, 148-153.
  • 24.Landsiedel R., Kapp M. D., SchulzM., Wiench K., Oesch F.: Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations-many questions, some answers. Mutat. Res. 2009, 681, 241-258.
  • 25.Lee J. H., Kang M., Choung S. J., Ogino K., Miyata S., Kim M. S., Park J. Y., Kim J. B.: The preparation of TiO2 nanometer photocatalyst film by a hydrothermal method and its sterilization performance for Giardia lamblia. Water Res. 2004, 38, 713-719.
  • 26.Li X., He J.: Synthesis of raspberry-like SiO2-TiO2 nanoparticles toward antireflective and self-cleaning coatings. ACS Appl. Mater. Interf. 2013, 5, 5282-5290.
  • 27.Li Z., Pan X., Wang T., Wang P. N., Chen J. Y., Mi L.: Comparison ofthe killing effects between nitrogen-doped and pure TiO2 on HeLa cells with visible light irradiation. Nanoscale Res. Lett. 2013, 8, 96.
  • 28.LiuL., MiaoP., Xu Y., Tian Z., Zou Z., Li G.: Study of Pt/TiO2 nanocomposite for cancer-cell treatment. J. Photochem. Photobiol. B 2010, 98, 207-210.
  • 29.Liu R., Zhang X., Pu Y., Yin L., Li Y., Zhang X., Liang G., Li X., Zhang J.: Small-sized titanium dioxide nanoparticles mediate immune toxicity in rat pulmonary alveolar macrophages in vivo. J. Nanosci. Nanotechnol. 2010, 10, 5161-5169.
  • 30.Long T. C., SalehN., TiltonR. D., Lowry G. V., VeronesiB.: Non-photoactivated titanium dioxide nanoparticles produce reactive oxygen species in immortalized mouse microglia (BV2). Environ. Sci. Technol. 2006, 40, 4346-4352.
  • 31.Long T. C., Tajuba J., Sama P., Saleh N., Swartz C., Parker J., Hester S., Lowry G. V.: Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ. Health Perspect. 2007, 115, 1631-1637.
  • 32.Menard A., Drobne D., Jemec A.: Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ. Pollut. 2011, 159, 677-684.
  • 33.NinomiyaK., Ogino C., OshimaS., Sonoke S., Kuroda S., ShimizuN.: Targeted sonodynamic therapy using protein-modified TiO2 nanoparticles. Ultrason. Sonochem. 2012, 19, 607-614.
  • 34.Parveen S., Misra R., Sahoo S. K.: Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 147-166.
  • 35.Ramkumar K. M., Manjula C., Gnanakumar G., KanjwalM. A., Sekar T. V., Paulmurugan R., Rajaguru P.: Oxidative stress-mediated cytotoxicity and apoptosis induction by TiO2 nanofibers in HeLa cells. Eur. J. Pharm. Biopharm. 2012, 81, 324-333.
  • 36.Reeves J. F., Davies S. J., DoddN. J. F., Jha A. N.: Hydroxyl radicals (*OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat. Res. 2008, 640, 113-122.
  • 37.Rehn B., Seiler F., Rehn S., Bruch J., Maier M.: Investigations on the inflammatory and genotoxic lung effects of two types of titanium dioxide: untreated and surface treated. Toxicol. Appl. Pharmacol. 2003, 189, 84-95.
  • 38.Robertson J. M. C., Robertson P. K. J., Lawton L. A.: A comparison of the effectiveness of TiO2 photocatalysis and UVA photolysis for the destruction of three pathogenic microorganisms. J. Photochem. Photobiol. A 2005, 175, 51-56.
  • 39.RozhkovaE. A., UlasovI., Lai B., Dimitrijevic N. M., LesniakM. S., Rajh T.: A high-performance nanobiophotocatalyst for targeted brain cancer therapy. Nano Lett. 2009, 9, 3337-3342.
  • 40.Sahoo S. K., Parveen S., Panda J. J.: The present and future of nanotechnology in human health care. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 20-31.
  • 41.Saquib Q., Al-Khedhairy A.A., Siddiqui M. A., Abou-Tarboush F. M., Azam A., Musarrat J.: Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells. Toxicol. in Vitro 2012, 26, 351-361.
  • 42.Shen B., Scaiano J. C., English A. M.: Zeolite encapsulation decreases TiO2-photosensitized ROS generation in cultured human skin fibroblasts. Photochem. Photobiol. 2006, 82, 5-12.
  • 43.Shukla R. K., Sharma V., PandeyA. K., Singh S., Sultana S., DhawanA.: ROS--mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol. in Vitro 2011, 25, 231-241.
  • 44.Sökmen M., Degerli S., Asian A.: Photocatalytic disinfection of Giardia intestinalis and Acanthamoeba castellani cysts in water. Exp. Parasitol. 2008, 119, 44-48.
  • 45.Srivastava R. K., Rahman Q., Kashyap M. P., Singh A. K., Jain G., Jahan S., LohaniM., LantowM., Pant A. B.: Nano-titanium dioxide induces genotoxicity and apoptosis in human lung cancer cell line, A549. Hum. Exp. Toxicol. 2013, 32, 153-166.
  • 46.Taniguchi N.: On the basic concept of "nano-Technology". Proc. Intl. Conf. Prod. London, Part II, British Society of Precision Engineering 1974.
  • 47.Thevenot P., Cho J., Wavhal D., Timmons R. B., Tang L.: Surface chemistry influences cancer killing effect of TiO2 nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2008, 4, 226-236. 2
  • 48.Toyooka T., Amano T., Ibuki Y.: Titanium dioxide particles phosphorylate histone H2AX independent of ROS production. Mutat. Res. 2012, 742, 84-91.
  • 49.Trouiller B., Reliene R., Westbrook A., Solaimani P., Schiestl R.: Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res. 2009, 69, 8784-8789.
  • 50.Vamanu C. I., Cimpan M. R., H0l P. J., S0rnes S., Lie S. A., Gjerdet N. R.: Induction of cell death by TiO2 nanoparticles: studies on a human monoblastoid cell line. Toxicol. in Vitro 2008, 22, 1689-1696.
  • 51.Wamer W. G., Yin J. J.: Photocytotoxicity in human dermal fibroblasts elicited by permanent makeup inks containing titanium dioxide. J. Cosmet. Sci. 2011, 62, 535-547.
  • 52.Wang L., Mao J., Zhang G. H., Tu M. J.: Nano-cerium-element-doped titanium dioxide induces apoptosis of Bel 7402 human hepatoma cells in the presence of visible light. World J. Gastroenterol. 2007, 13, 4011-4014.
  • 53.Whitesides G. M.: The "right" size in nanobiotechnology. Nat. Biotechnol. 2003, 21, 1161-1165.
  • 54.Xu J., Sun Y., Huang J., Chen C., Liu G., Jiang Y., Zhao Y., Jiang Z.: Photokilling cancer cells using highly cell-specific antibody-TiO2 bioconju-gates and electroporation. Bioelectrochemistry 2007, 71, 217-222.
  • 55.Xu J., Sun Y., Zhao Y., Huang J., Chen C., Jiang Z.: Photocatalytic inactiva-tion effect of gold-doped TiO2 (Au/TiO2) nanocomposites on human colon carcinoma LoVo cells. Int. J. P2hotoenerg2y 2007, 2007, article ID 97308.
  • 56.Yamaguchi S., Kobayashi H., Narita T., Kanehira K., Sonezaki S., Kubota Y., Terasaka S., Iwasaki Y.: Novel photodynamic therapy using water-dispersed TiO2-polyethylene glycol compound: evaluation of antitumor effect on glioma cells and spheroids in vitro. Photochem. Photobiol. 2010, 86, 964-971.
  • 57.Yamaguchi S., Kobayashi H., Narita T., Kanehira K., Sonezaki S., Kudo N., Kubota Y., TerasakaS., HoukinK.: Sonodynamic therapy using water-dispersed TiO2-polyethyleneglycol compound on glioma cells: comparison of cytotoxic mechanism with photodynamic therapy. Ultrason. Sonochem. 2011, 18, 1197-1204.
  • 58.Yu J. C., Ho W., Lin J., Yip H., Wong P. K.: Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ. Sci. Technol. 2003, 37, 2296-2301.
  • 59.Ze Y., Zheng L., Zhao X., Gui S., Sang X., Su J., Guan N., Zhu L., Sheng L., Hu R., Cheng J., Cheng Z., Sun Q., Wang L., Hong F.: Molecular mechanism of titanium dioxide nanoparticles-induced oxidative injury in the brain of mice. Chemosphere 2013, 92, 1183-1189.
  • 60.Zhang A. P., Sun Y. P.: Photocatalytic killing effect of TiO2 nanoparticles on Ls-174-t human colon carcinoma cells. World J. Gastroenterol. 2004, 10, 3191-3193.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-89a8b1b6-89cf-44f1-adf0-359a6e97322f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.