PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 4 |

Tytuł artykułu

Evaluation of dry matter intake, average daily gain and faecal nitrogen excretion predicted by the Cornell Net Carbohydrate and Protein System with different beef cattle breeds fed in China

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study was conducted to evaluate the predictions of dry matter intake (DMI), average daily gain (ADG), and faecal nitrogen (N) excretion by the Cornell Net Carbohydrate and Protein System Version 6.1.26 (CNCPSv6) in China. A total of 71 bulls from two imported breeds, Limousin and Simmental, and three local breeds: Luxi, Jinnan and Qinchuan were selected in China. Data required by the CNCPSv6 model were collected, and model predictions were generated for animals of each breed. The regression equation between observed and predicted DMI for these cattle was: YOBS = 0.93XCNCPS + 0.48 (R2 = 0.94; P < 0.001), with an intercept not different from zero and a slope not different from unity. The proportion of deviation points lying within the range –0.4 to 0.4 kg · d–1 was 90.1%. The regression equation between observed and predicted ADG was: YOBS = 1.07XCNCPS – 0.05 (R2 = 0.92; P < 0.001), with an intercept not different from zero and a slope not different from unity. About 78.9% of points fell within the range –0.1 to 0.1 kg/d for these cattle. Model-predicted faecal N excretion for the cattle breeds was close to the observed values. The regression equation between observed and predicted faecal N excretion was: YOBS = 1.04XCNCPS – 1.48 (R2 = 0.94; P < 0.001), with an intercept not different from zero and a slope not different from unity. About 73.3% of the points fell within −4 and 4 g per day. These results show that the CNCPSv6 model using actual feed fractions can give good predictions of DMI, ADG and faecal N excretion with different beef cattle breeds in China.

Wydawca

-

Rocznik

Tom

22

Numer

4

Opis fizyczny

p.302-310,fig.,ref.

Twórcy

autor
  • State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R.China
autor
  • State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R.China
autor
  • State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R.China
autor
  • College of Animal Sciences, Yangtze University, Jingzhou 434025, P.R.China
autor
  • State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R.China

Bibliografia

  • AOAC, 1990. Association of Official Analytical Chemists, Official Methods of Analysis. 16th Edition. Gaithersburg, MD
  • Du J.P., Liang Y., Xin H.S., Xue F., Zhao J.S., Ren L.P., Meng Q.X., 2010. Evaluation of dry matter intake and average daily gain predicted by the Cornell Net Carbohydrate and Protein System in crossbred growing bulls kept in a traditionally confined feeding system in China. Asian-Austr. J. Anim. Sci. 23, 1445–1454
  • Fox D.G., Sniffen C.J., O’Comor J.D., Russell J.B., Van Soest P.J., 1992. A Net Carbohydrate and Protein System for evaluating cattle diets: III. cattle requirements and diet adequacy. J. Anim. Sci. 70, 3578–3596
  • Fox D.G., Tedeschi L.O., Tylutki T.P., Russell J.B., Van Amburgh M.E., Chase L.E., Pell A.N., Overton T.R., 2004. The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Anim. Feed Sci. Tech. 112, 29–78
  • Fox D.G., Tylutki T.P., Tedeschi L.O., Van Amburgh M.E., Chase L.E., Pell A.N., Overton T R., Russell J.B., 2003. The net carbohydrate and protein system for evaluating herd nutrition and nutrient excretion. CNCPS version 5.0, Model Documentation. Ithaca, NY (USA)
  • Hall M.B., 2003. Challenges with nonfiber carbohydrate methods. J. Anim. Sci. 81, 3226–3232
  • Lanzas C., Sniffen C.J., Seo S., Tedeschi L.O., Fox D.G., 2007. A revised CNCPS feed carbohydrate fractionation scheme for formulating rations for ruminants. Anim. Feed Sci. Tech. 136, 167–190
  • Li X.Q., Wang H.M., Chen Y.Y., 2009. Several considerations on how to promote beef industry being healthy development in China. Chin. J. Anim. Sci. 45 (22), 43–46
  • Licitra G., Hernandez T.M., Van Soest P.J., 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Tech. 57, 347–358
  • Liu B., Chen H., Lan X.Y., Zhang Z.Q., Zhang R.F., 2006. Research on heterosis and growth performance in Qinchuan and its hybrids. Chin. J. Anim. Sci. 42 (15), 1–4
  • Mayer D.G., Butler D.G., 1993. Statistical validation. Ecol. Model. 68, 21–32
  • Mitchell P.L., Sheehy J.E., 1997. Comparison of predictions and observations to assess model performance: a method of empirical validation. In: M.J. Kropff, P.S. Teng, P.K. Aggarwal, J. Bouma, B.A. M. Bouman, J.W. Jones, H.H. Van Laar (Editors). Applications of Systems Approaches at the Field Level.
  • Kluwer Academic Publishers, Boston (USA), pp. 437–451
  • Molina D.O., Matamoros I., Almeida Z., Tedeschi L., Pell A.N., 2004. Evaluation of the dry matter intake predictions of the Cornell Net Carbohydrate and Protein System with Holstein and dualpurpose lactating cattle in the tropics. Anim. Feed Sci. Tech. 114, 261–278
  • Oenema O., 2006. Nitrogen budgets and losses in livestock systems. Int. Congr. 1293, 262–271
  • Richard J.F., David V.M., 1987. Determination of volatile fatty acids (C2-C5) and lactic acid in silage by gas chromatography. Analyst 112, 1213–1216
  • Russell J.B., Van Soest P.J., 1984. In vitro ruminal fermentation of organic acids common in forage. Appl. Environ. Microbiol. 47, 155–159
  • Tedeschi L.O., 2006. Assessment of the adequacy of mathematical models. Agr. Syst. 89, 225–247
  • Tedeschi L.O., Fox D.G., Russell J.B., 2000. Accounting for ruminal deficiencies of nitrogen and branched-chain amino acids in the structure of the Cornell Net Carbohydrate and Protein System. Proceedings of Cornell Nutrition Conference for Feed Manufacturers, Rochester, NY, pp. 224–238
  • Tylutki T.P., Fox D.G., Durbal V.M., Tedeschi L.O., Russell J.B., Van Amburgh M.E., Overton T.R., Chase L.E., Pell A.N., 2008. Cornell Net Carbohydrate and Protein System: A model for precision feeding of dairy cattle. Anim. Feed Sci. Tech. 143, 174–202
  • Tylutki T.P., PAS, Dpl. ACAN, Fox D.G., Mcmahon M., 2004. Implementation of nutrient management planning on a dairy farm. Prof. Anim. Sci. 20, 58–65
  • Van Soest P.J., Robertson J.B., Lewis B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597
  • Xiong Y.Q., Bartle S.J., Preston R.L., 1990. Improved enzymatic method to measure processing effects and starch availability in sorghum grain. J. Anim. Sci. 68, 3861–3870
  • Zheng P.L., Zhang Z.G., Chen X.H., Tu Y.R., 1986. Bovine Breeds in China (in Chinese). China Agricultural Publishing Press, Beijing, pp. 31–66
  • Zhao J.S., Zhou Z.M., Ren L.P., Xiong Y.Q., Du J.P., Meng Q.X., 2008. Evaluation of dry matter intake and daily weight gain predictions of the Cornell Net Carbohydrate and Protein System with local breeds of beef cattle in China. Anim. Feed Sci. Tech. 142, 231–246

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-89982ad3-8fef-4f27-90a0-b6757e808c13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.