PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 69 | 3 |

Tytuł artykułu

Cytoprotective effect of Morchella esculenta protein hydrolysate and its derivative against H2O2-induced oxidative stress

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study aimed to determine seasonal differences in the composition of bacterial microbiota and volatile organic compounds (VOCs) in SwissDutch-type cheese (manufactured between 2012 and 2014). Bacterial diversity and VOCs (acetaldehyde; ketones: acetone, diacetyl, acetoin; alcohols: methanol, ethanol; esters: ethyl acetate, ethyl propionate, ethyl butyrate; fatty acids: acetic acid, propionic acid, isobutyric acid, butyric acid, isovaleric acid, valeric acid, isocaproic acid, caproic acid, heptanoic acid) were determined by polymerase chain reaction – denaturing gradient gel electrophoresis (PCR-DGGE), and headspace gas chromatography (HS-GC), respectively. Season influenced the composition of both bacterial microbiota and VOCs in cheese. Counts of starter bacteria (Lactococcus, Leuconostoc and Propionibacterium – 6.51–7.14, 3.6–3.96 and 2.88–4.72 log CFU/g, respectively) were higher in the first year of the study, likewise these of the non-starter Lactobacillus (4.12–5.69 log CFU/g). The total VOC content was substantially lower in the summer-autumn 2012 (0.73228–3.34111 mg/g) than in the other seasons (63.28810–131.27690 mg/g). Differences in bacterial microbiota and the VOC profiles were observed between cheeses manufactured in winter-spring and summer-autumn seasons. Winter- and spring-manufactured cheeses were also characterized by a lower number of bacterial species (average 8.7–10.5 species/sample) than the cheeses produced in the summer and in the autumn (average 10–13 species/sample). The results of the study indicate that the cheese-making process has to be continuously monitored to minimize differences across manufacturing seasons.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

69

Numer

3

Opis fizyczny

p.255-265,fig.,ref.

Twórcy

autor
  • College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
  • College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
  • Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
autor
  • College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
  • Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
autor
  • College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
autor
  • College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
  • Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
autor
  • College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
  • Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

Bibliografia

  • 1. Chang, H.T., Jan, C.R., Liang, W.Z. (2018). Protective effects of a phenolic glycoside compound curculigoside on H2O2-induced oxidative stress and cytotoxicity in normal human breastnepithelial cells. Journal of Functional Foods, 41, 171–182.
  • 2. Chen, J.C., Wang, R.F., Wang, T.Y., Ding, Q.L., Khalil, A., Xu, S.T., Lin, A.J., Yao, H.Q., Xie, W.J., Zhu, Z.Y., Xu, J.Y., (2017). Antioxidant properties of novel dinners derived from natural beta-elemene through inhibiting H2O2-induced apoptosis. ACS Medicinal Chemistry Letters, 8(4), 443–448.
  • 3. Cuadrado, A., Moreno-Murciano, P., Pedraza-Chaverri, J. (2009). The transcription factor Nrf2 as a new therapeutic target in Parkinson’s disease. Expert Opinion on Therapeutic Targets, 13(3), 319–329.
  • 4. Desagher, S., Martinou, J.C. (2000). Mitochondria as the central control point of apoptosis. Trends in Cell Biology, 10(9), 369–377.
  • 5. Fernandez-Checa, J.C., Fernandez, A., Morales, A., Mari, M., Garcia-Ruiz, C., Colell, A. (2010). Oxidative stress and altered mitochondrial function in neurodegenerative diseases: Lessons from mouse models. CNS & Neurological Disorders – Drug Targets, 9(4), 439–454.
  • 6. Hu, J., Yu, Q. W., Zhao, F., Ji, J. Z., Jiang, Z. Z., Chen, X., Gao, P., Ren, Y.R., Shao, S., Zhang, L.Y., Yan, M. (2015). Protection of quercetin against triptolide-induced apoptosis by suppressing oxidative stress in rat Leydig cells. Chemico-Biological Interactions, 240, 38–46.
  • 7. Je, J.Y., Lee, D.B. (2015). Nelumbo nucifera leaves protect hydrogen peroxide-induced hepatic damage via antioxidant enzymes and HO-1/Nrf2 activation. Food & Function, 6(6), 1911–1918.
  • 8. Jiao, W., Wang, Y., Kong, L., Ou-yang, T., Meng, Q., Fu, Q., Hu, Z.Z. (2018). CART peptide activates the Nrf2/HO-1 antioxidant pathway and protects hippocampal neurons in a rat model of Alzheimer’s disease. Biochemical and Biophysical Research Communications, 501(4), 1016–1022.
  • 9. Jin, M.M., Zhang, L., Yu, H.X., Meng, J., Sun, Z., Lu, R.R. (2013). Protective effect of whey protein hydrolysates on H2O2-induced PC12 cells oxidative stress via a mitochondria-mediated pathway. Food Chemistry, 141(2), 847–852.
  • 10. Lee, J.Y., Lee, S.H., Kim, H.J., Ha, J.M., Lee, S.H., Lee, J.H., Ha, B.J. (2004). The preventive inhibition of chondroitin sulfate against the CCl4-induced oxidative stress of subcellular level. Archives of Pharmacal Research, 27(3), 340–345.
  • 11. Li, J.Q., Ichikawa, T., Janicki, J.S., Cui, T.X. (2009). Targeting the Nrf2 pathway against cardiovascular disease. Expert Opinion on Therapeutic Targets, 13(7), 785–794.
  • 12. Li, T.G., Chen, B., Du, M., Song, J.J., Cheng, X., Wang, X., Mao, X. (2017). Casein glycomacropeptide hydrolysates exert cytoprotective effect against cellular oxidative stress by up-regulating HO-1 expression in HepG2 cells. Nutrients, 9(1), art. no. 31.
  • 13. Li, Y., Li, J.H., Huang, H., Yang, M.F., Zhuang, D.G., Cheng, X.M., Zhang, H.Z., Fu, X.L. (2016). Microcystin-LR induces mitochondria-mediated apoptosis in human bronchial epithelial cells. Experimental and Therapeutic Medicine, 12(2), 633–640.
  • 14. Liu, C.L., Xie, L.X., Li, M., Durairajan, S.S. K., Goto, S., Huang, J.D. (2007). Salvianolic acid B inhibits hydrogen peroxide-induced endothelial cell apoptosis through regulating PI3K/Akt signaling. PLoS One, 2(12), art. no. e1321.
  • 15. Mańdziuk, S., Dudzisz-Sledź, M., Korszeń-Pilecka, I., Milanowski, J., Wojcierowski, J., Korobowicz, E. (2003). Expression of p53 gene in stage IIIA non-small cell lung cancer in patients after neoadjuvant chemotherapy with Vepesid and Cisplatin. Annales Universitatis Mariae Curie-Sklodowska. Sectio D: Medicina, 58(1), 154–157.
  • 16. Mariani, E., Polidori, M.C., Cherubini, A., Mecocci, P. (2005). Oxidative stress in brain aging, neurodegenerative and vascular diseases: An overview. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 827(1), 65–75.
  • 17. Morifuji, M., Ishizaka, M., Baba, S., Fukuda, K., Matsumoto, H., Koga, J., Kanegae, M., Higuchi, M. (2010). Comparison of different sources and degrees of hydrolysis of dietary protein: Effect on plasma amino acids, dipeptides, and insulin responses in human subjects. Journal of Agricultural and Food Chemistry, 58(15), 8788–8797.
  • 18. Neuzil, J., Tomasetti, M., Mellick, A.S., Alleva, R., Salvatore, B.A., Birringer, M., Fariss, M.W. (2004). Vitamin E analogues: A new class of inducers of apoptosis with selective anti-cancer effects. Current Cancer Drug Targets, 4(4), 355–372.
  • 19. Nguyen, T., Nioi, P., Pickett, C.B. (2009). The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. The Journal of Biological Chemistry, 284(20), 13291–13295.
  • 20. Pan, W.J., Ding, Q.Y., Wang, Y., Wang, D.D., Lu, Y.M., Yang, W.W., Cai, Z.N., Cheng, X.D., Zhang, W.N., Chen, Y. (2018). A bioactive polysaccharide TLH-3 isolated from Tricholoma lobayense protects against oxidative stress-induced premature senescence in cells and mice. Journal of Functional Foods, 42, 159–170.
  • 21. Pyo, M.C., Yang, S.Y., Chun, S.H., Oh, N.S., Lee, K.W. (2016). Protective effects of Maillard reaction products of whey protein concentrate against oxidative stress through an Nrf2-dependent pathway in HepG2 cells. Biological & Pharmaceutical Bulletin, 39(9), 1437–1447.
  • 22. Ruiz-Roca, B., Delgado-Andrade, C., Navarro, M.P., Seiquer, I. (2011). Effects of Maillard reaction products from glucose-lysine model systems on oxidative stress markers and against oxidative induction by hydrogen peroxide in Caco-2 cells. Journal of Food and Nutrition Research, 50(4), 237–248.
  • 23. Seifried, H.E., Anderson, D.E., Fisher, E.I., Milner, J.A. (2007). A review of the interaction among dietary antioxidants and reactive oxygen species. The Journal of Nutritional Biochemistry, 18(9), 567–579.
  • 24. Shen, R., Liu, D.S., Hou, C.C., Liu, D., Zhao, L.X., Cheng, J., Wang, D.G., Bai, D.C., (2017). Protective effect of Potentilla anserina polysaccharide on cadmium-induced nephrotoxicity in vitro and in vivo. Food & Function, 8(10), 3636–3646.
  • 25. Shi, Y.N., Kovacs-Nolan, J., Jiang, B., Tsao, R., Mine, Y. (2014). Peptides derived from eggshell membrane improve antioxidant enzyme activity and glutathione synthesis against oxidative damage in Caco-2 cells. Journal of Functional Foods, 11, 571–580.
  • 26. Wang, Z.J., Xie, J.H., Kan, L.J., Wang, J.Q., Shen, M.Y., Li, W.J., Nie, S.P., Xie, M.Y., (2015). Sulfated polysaccharides from Cyclocarya paliurus reduce H2O2-induced oxidative stress in RAW 264.7 cells. International Journal of Biological Macromolecules, 80, 410–417.
  • 27. Xia, T., Yao, J.H., Zhang, J., Zheng, Y., Song, J., Wang, M. (2017). Protective effects of Shanxi aged vinegar against hydrogen peroxide-induced oxidative damage in LO2 cells through Nrf2-mediated antioxidant responses. RSC Advances, 7(28), 17377–17386.
  • 28. Xu, Z., Fang, Y., Chen, Y., Yang, W.J., Ma, N., Pei, F., Kimatu, B.M., Hu, Q.H., Qiu, W.F., (2016). Protective effects of Se-containing protein hydrolysates from Se-enriched rice against Pb2+- induced cytotoxicity in PC12 and RAW264.7 cells. Food Chemistry, 202, 396–403.
  • 29. Xue, S., Chen, Y.X., Qin, S.K., Yang, A.Z., Wang, L., Xu, H.J., Geng, H.Y. (2014). Raltitrexed induces mitochondrial-mediated apoptosis in SGC7901 human gastric cancer cells. Molecular Medicine Reports, 10(4), 1927–1934.
  • 30. Yamaguchi, M., Okamoto, K., Kusano, T., Matsuda, Y., Suzuki, G., Fuse, A., Yokota, H. (2015). The effects of xanthine oxidoreductase inhibitors on oxidative stress markers following global brain ischemia reperfusion injury in C57BL/6 mice. PLoS One, 10(7), art. no. e0133980.
  • 31. Yang, S.Y., Lee, S., Pyo, M.C., Jeon, H., Kim, Y., Lee, K.W. (2017). Improved physicochemical properties and hepatic protection of Maillard reaction products derived from fish protein hydrolysates and ribose. Food Chemistry, 221, 1979–1988.
  • 32. Yoon, S.O., Kim, M.M., Park, S.J., Kim, D., Chung, J., Chung, A.S. (2001). Selenite suppresses hydrogen peroxide-induced cell apoptosis through inhibition of ASK1/JNK and activation of PI3-K/Akt pathways. The FASEB Journal, 15(13), 111–113.
  • 33. Zamora-Sillero, J., Ramos, P., Monserrat, J.M., Prentice, C. (2018). Evaluation of the antioxidant activity in vitro and in hippocampal HT-22 cells system of protein hydrolysates of common carp (Cyprinus carpio) by-product. Journal of Aquatic Food Product Technology, 27(1), 21–34.
  • 34. Zha, F.C., Wei, B.B., Chen, S.J., Dong, S.Y., Zeng, M.Y., Liu, Z.Y. (2015). The Maillard reaction of a shrimp by-product protein hydrolysate: Chemical changes and inhibiting effects of reactive oxygen species in human HepG2 cells. Food & Function, 6(6), 1919–1927.
  • 35. Zhang, H.J., Chen, R.C., Sun, G.B., Yang, L.P., Xu, X.D., Sun, X.B. (2018a). Protective effects of total flavonoids from Clinopodium chinense (Benth.) O. Ktze on myocardial injury in vivo and in vitro via regulation of Akt/Nrf2/HO-1 pathway. Phytomedicine, 40, 88–97.
  • 36. Zhang, Q., Wu, C.E., Fan, G.J., Li, T.T., Sun, Y.J. (2018b). Improvement of antioxidant activity of Morchella esculenta protein hydrolysate by optimized glycosylation reaction. CyTA – Journal of Food, 16(1), 238–246.
  • 37. Zhang, Q., Wu, C.E., Fan, G.J., Li, T.T., Wen, X. (2018c). Characteristics and enhanced antioxidant activity of glycated Morchella esculenta protein isolate. Food Science and Technology (Campinas), 38(1), 126–133.
  • 38. Zhang, Q.Z., Tong, X.H., Sui, X.N., Wang, Z.J., Qi, B.K., Li, Y., Jiang, L.Z. (2018d). Antioxidant activity and protective effects of alcalase-hydrolyzed soybean hydrolysate in human intestinal epithelial Caco-2 cells. Food Research International, 111, 256–264.
  • 39. 39 Zhang, X.X., Wang, L., Wang, R., Luo, X.H., Li, Y.A., Chen, Z.X. (2016). Protective effects of rice dreg protein hydrolysates against hydrogen peroxide-induced oxidative stress in HepG- 2 cells. Food & Function, 7(3), 1429–1437.
  • 40. Zhou, Y.F., Guo, B., Ye, M.J., Liao, R.F., Li, S.L. (2016). Protective effect of rutin against H2O2-induced oxidative stress and apoptosis in human lens epithelial cells. Current Eye Research, 41(7), 933–942.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-891c67db-5f80-41bf-b01f-b1c49ce84e16
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.