PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 59 | 4 |

Tytuł artykułu

Simultaneous degradation of waste phosphogypsum and liquid manure from industrial pig farm by a mixed community of sulfate-reducing bacteria

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The utilization of pig manure as a source of nutrients for the dissimilatory reduction of sulfates present in phosphogypsum was investigated. In both types of media used (synthetic medium and raw pig manure) increased utilization of sulfates with growing COD/SO₄²⁻ ratio in the medium was observed. The percent of sulfate reduction obtained in synthetic medium was from 18 to 99%, whereas the value for cultures set up in raw liquid manure was from 12% (at COD/SO₄²⁻ of 0.3) up to as high as 98% (at COD/SO₄²⁻ equal 3.80). Even with almost complete reduction of sulfates the percent of COD reduction did not exceed 55%. Based on the results obtained it was concluded that the effectiveness of removal of sulfates and organic matter by sulfate-reducing bacteria (SRB) depends to a considerable degree on the proportion between organic matter and sulfates in the purified wastewaters. The optimal COD/SO₄²⁻ ratio for the removal of organic matter was between 0.6 and 1.2 whereas the optimal ratio for the removal of sulfates was between 2.4 and 4.8.

Wydawca

-

Rocznik

Tom

59

Numer

4

Opis fizyczny

p.241-247,fig.,ref.

Twórcy

autor
  • Department of Applied Microbiology, Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland
autor
  • Department of Applied Microbiology, Institute of Microbiology, Warsaw University, Warsaw, Poland
  • Department of Applied Microbiology, Institute of Microbiology, Warsaw University, Warsaw, Poland

Bibliografia

  • Alfaya E, M. Cuenca-Sanchez, F. Garcia-Orenes and P.N.L. Lens. 2009. Endogenous and bioaugmented sulfate reduction in calcareous gypsiferous soils. Environ. Technol. 30: 1305-1312.
  • Arocena J.M., P.M. Rutherford and M.J. Dudas. 1995. Heterogeneous distribution of trace elements and fluorine in phosphogypsum by-product. Sci. Total. Environ. 162: 149-160.
  • Azabou S., T. Mechichi and S. Sayadi. 2005. Sulfate reduction from phosphogypsum using mixed culture of sulfate reducing-bacteria. Int. Biodeter. Biodegr. 56: 236-242.
  • Azabou S., T. Mechichi and S. Sayadi. 2007. Zinc precipitation by heavy-metal tolerant sulfate-reducing bacteria enriched on phosphogypsum as a sulfate source. Miner. Eng. 20: 173-178.
  • Cotta M.A., T.R. Whitehead and R.L. Zeltwanger. 2003. Isolation, characterization and comparison of bacteria from swine faeces and manure storage pits. Environ. Microbiol. 5: 737-745.
  • Deswaef S., T. Salmon, S. Hiligsmann, X. Taillieu, N. Milande, Ph. Thonart and M. Crine. 1996. Treatment of gypsum waste in a two stage anaerobic reactor. Water Sci. Technol. 34: 367-334.
  • Dvorak D.H., R.S. Hedin, H.M. Edenborn and P.E. McIntire. 1992. Treatment of metal-contaminated water using bacterial sulfate reduction: results from pilot scale reactors. Biotechnol. Bioeng. 40: 609-616.
  • Hamilton W.A. 1998. Bioenergetics of sulfate-reducing bacteria in relation to their environment impact. Biodegradation 9: 201-212.
  • Hammeck R.W. and H.M. Edenborn. 1992. The removal of nickel from mine waters using bacterial sulfate reduction. Appl. Microbiol. Biotechnol. 37: 674-678.
  • Hao O.J., J.M. Chen, L.J. Huang and R.L. Buglass. 1996. Sulfate-reducing bacteria. Crit. Rev. Env. Sci. Tech. 26: 155-187.
  • Hass C.N. and Polpraset C. 1993. Biological sulfide prestripping for metal and COD removal. Water Environ. Res. 65, 645-649.
  • Hulshof A.H.M. 2006. Evaluation of in situ layers for treatment of acid mine drainage: a field comparison. Water Res. 40: 1816-1826.
  • Jong T. and D.L. Parry. 2006. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor. Water Res. 40: 2561-2571.
  • Juszczak A., M. Waligórska, K. Seifert, A. Meller, M. Habrych and F. Domka. 2002. The effect of phosphogypsum on the activity of Desulfotomaculum ruminis in lactate medium. Pol. J. Environ. Stud. 11: 361-366.
  • Kaufman E.N., M.H. Little and P.T. Selvaraj. 1996. Recycling of FGD gypsum to calcium carbonate and elemental sulfur using mixed sulfate-reducing bacteria with sewage digest as a carbon source. J. Chem. Tech. Biotechnol. 66: 356-374.
  • Kosińska K. and T. Miśkiewicz. 1997. Degradation of organic substances by Desulfovibrio desulfuricans in liquid manure from industrial pig farming. Biotechnol. Lett. 19: 515-519.
  • Kosińska K. and T. Miśkiewicz. 1999. Upgrading the efficiency of dissimilatory sulfate reduction by Desulfovibrio desulfuricans via adjustment of the COD/SO₄ ratio. Biotechnol. Lett. 21: 299-302.
  • Kosińska K. and T. Miśkiewicz. 2000. Simultaneous degradation of waste FeSO₄ with liquid manure from industrial pig farming by Desulfovibrio desulfuricans. Environ. Technol. 21: 585-589.
  • Kosińska K. and T. Miśkiewicz. 2005. Enhancement of continuous biodegradation on sulfates and organic pollutants by Desulfovibrio desulfuricans via biomass recirculation. Electron J. Pol. Agric. Univ. 8(3), 23. (www.ejpau.media.pl/volume8/issue3/ art-23.html).
  • Kowalski W., M. Błaszczyk, R. Mycielski, M. Przytocka-Jusiak and M. Rzeczycka. 1996. Microbiological recovery of lanthanides from phosphogypsum waste. Applied Mineralogy Proceedings of the 5th International Congress on Applied Mineralogy in the Minerals Industry. Warsaw University of Technology, 2-5 June.
  • Kowalski W., J. Parafiniuk and M. Stępisiewicz. 1990. Mineralogy and geochemistry of phosphogypsum from Wizów. Chemical Plant heaps (in Polish). Arch. Mineral. 45: 115-134.
  • Lens P.LN., A. Visser, A. Janssen, P.L. Hulshoff and G. Lettinga. 1998. Biotechnological treatment of sulfate rich wastewaters. Crit. Rev. Env. Sci. Tech. 28: 41-88.
  • Lens P.LN., M. Vallero, G. Esposito and M. Zandvoort. 2002. Perspectives of sulfate reducing bioreactors in environmental biotechnology. Rev. Environ. Sci. Biotechnol. 1: 311-325.
  • Lens P.L.N., R. Klijn, J.B. van Lier and G. Lettinga. 2003. Effect of specific gas loading rate on thermophilic (55°C) acidifying (pH 6) and sulfate reducing granular sludge reactors. Water Res. 37: 1033-1047.
  • Logan MV., K.F. Rerdon and L.A. Figueroa. 2005. Microbial community activation during establishment performance, and decline of bench scale passive treatment systems for mine drainage. Water Res. 39: 4537-4551.
  • Look W., P. Hulshoff, P.N.L. Lens, A.J.M. Stams and G. Lettinga. 1998. Anaerobic treatment of sulfate-rich wastewaters. Biodegradation 9: 213-224.
  • Malina J. 1967. Chemical oxygen demand. Analytical procedures and methods. Prepared for Poland Project. 26 WHO. University of Texas at Austin.
  • Maree J.P. and W.F. Strydom. 1987. Biological sulfate removal from industrial effluent in an upflow packed bed reactor. Water Res. 21: 141-146.
  • Papastefanou C, S. Stoulos, A. Ioannidou and M. Manolopoulou. 2006. The application of phosphogypsum in agriculture and the radiological impact. J. Environ. Radioact. 89: 188-198.
  • Postgate J.R. 1984. The Sulfate Reducing Bacteria. 2nd ed. Cambridge University Press, Cambridge.
  • Przytocka-Jusiak M., W. Kowalski, M. Rzeczycka, M. Błaszczyk and R. Mycielski. 1995. Microbiological phosphogypsum transformation products in thermophilic anaerobic cultures (in Polish). Biotechnologia 29: 103-112.
  • Przytocka-Jusiak M., M. Rzeczycka, E. Ponichtera and R. Mycielski. 1997. Degradation of benzene by thermophilic sulfate reducing bacteria (in Polish). Materials from the V Polish National Science and Technology Symposium "Environmental Biotechnology". Wrocław.
  • Rhabus R.,T.A. Hansen and F. Widdel. 2006. Dissimilatory sulfate and sulfur-reducing prokaryotes, pp. 659-768. In: M. Dworkin, S. Falkow, E. Rosenberg, K.H. Schleifer and E. Stackebrandt (eds.), The Procaryotes. Vol. 2. Springer, New York.
  • Rzeczycka M., R. Mycielski, W. Kowalski and M. Gałązka. 2001. Biotransformation of phosphogypsum in media containing different forms of nitrogen. Acta Microbiol. Polon. 50: 281-289.
  • Rzeczycka M., A. Suszek and M. Błaszczyk. 2004. Biotransformation of phosphogypsum by sulfate-reducing bacteria in media containing different zinc salts. Pol. J. Environ. Stud. 13: 209-217.
  • Rzeczycka M. and M. Błaszczyk. 2005. Growth and activity of sulfate-reducing bacteria in media containing phosphogypsum and different sources of carbon. Pol. J. Environ. Stud. 14: 891-895.
  • Silva A.J., M.B. Varesche, E. Foresti and M. Zaiat. 2002. Sulfate removal from industrial wastewater using a packed-bed anaerobic reactor. Process Biochem. 37: 927-935.
  • Song Y. Ch., B.Ch. Piak, H.S. Shin and S.J. La. 1998. Influence of electron donor and toxic materials on the activity of sulfate-reducing bacteria for the treatment of electroplating wastewater. Water Sci. Technol. 38: 187-194, 1998.
  • Vossoughi M., M. Shakeri and I. Alemzadeh. 2003. Performance of anaerobic baffled reactor treating synthetic wastewater influenced by decreasing COD/SO₄ ratios. Chem. Eng. Process. 42: 811-816.
  • Widdel F. 1988. Microbiology and Ecology of Sulfate and Sulfur-Reducing Bacteria, pp. 469-585. In: Zehnder A.J.B. (ed.). Biology of Anaerobic Microorganisms. Wiley & Sons, New York.
  • Zhu J. 2000. A review of microbiology in swine manure odor control. Agr. Ecosys. Environ, 78: 93-106.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-89163e67-e190-4b0b-801a-3407f4154a52
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.