PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 2 |

Tytuł artykułu

Effect of quick lime and dolomite application on mobility of elements (Cd, Zn, Pb, As, Fe, and Mn) in contaminated soils

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Weakly acidic Litavka and alkaline Malín soils are good examples of multi-contaminated soils in the Czech Republic. The aim of this study was to investigate the effects of different application rates of quick lime (lime) and dolomite on the mobility of cadmium, zinc, lead, arsenic, iron and manganese. Additives were applied to soil samples at three rates and incubated for 7, 14, 28, and 42 days. Plantavailable (extracted by CaCl₂) and acid-extractable (extracted by CH₃COOH) concentrations of elements were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). In alkaline soil, there was no effect of lime and dolomite application on concentrations of elements. In acid soil, there was a decrease in plant-available concentrations of Cd and Zn, no effect on plant-available Fe and Mn concentrations, and a slight increase in plant-available Pb and As concentrations after lime application. With the exception of a decrease in Pb and Mn concentrations, the same trends were observed for acid-extractable concentrations of elements. Dolomite application was less effective than lime application. The effect of dolomite on the immobilization of elements increased with increasing application rates. There was a weak effect of time during incubation on changes in concentrations of elements. We concluded that high immobilization efficiency of alkaline additives on Cd and Zn can be recorded only on acid soils. Application of lime and dolomite is an ineffective measure to immobilize Pb and As in both acid or alkaline soils.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

22

Numer

2

Opis fizyczny

p.577-589,fig.,ref.

Twórcy

  • Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Kamýcká 129, 165 21 Prague, Czech Republic
autor
autor
  • Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Kamýcká 129, 165 21 Prague, Czech Republic
autor
  • Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Kamýcká 129, 165 21 Prague, Czech Republic

Bibliografia

  • 1. ALKORTA I., BECERRIL J.M., GARBISU C. Phytostabilization of metal contaminated soils. Rev. Environ. Health. 25, 135, 2010.
  • 2. DO NASCIMENTO C.W.A., XING B. Phytoextraction: a review on enhanced metal availability and plant accumulation. Sci. Agric. 63, 299, 2006.
  • 3. PUSCHENREITER M., HORAK O., FRIESL W., HARTL W. Low-cost agricultural measures to reduce heavy metal transfer into the food chain – a review. Plant Soil Environ. 51, 1, 2005.
  • 4. KUMPIENE J., LAGERKVIST A., MAURICE C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments - A review. Waste Manage. 28, 215, 2008.
  • 5. MISRA V., TIWARI A., SHUKLA B., SETH C.S. Effects of soil amendments on the bioavailability of heavy metals from zinc mine tailings. Environ. Monit. Assess. 155, 467, 2009.
  • 6. LOMBI E., HAMON R.E., MCGRATH S.P., MCLAUGHLIN M.J. Lability of Cd, Cu and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques. Environ. Sci. Technol. 37, 979, 2003.
  • 7. LEE T.-M., LAI H.-Y., CHEN Z.-S. Effect of chemical amendments on the concentration of cadmium and lead in long-term contaminated soils. Chemosphere 57, 1459, 2004.
  • 8. MCBRIDE M., SAUVÉ S., HENDERSHOT W. Solubility control of Cu, Zn, Cd, and Pb in contaminated soils. Eur. J. Soil Sci. 48, 337, 1997.
  • 9. BURGOS P., MADEJÓN E., PÉREZ-DE-MORA A., CABRERA F. Spatial variability of the chemical characteristics of a trace-element-contaminated soil before and after remediation. Geoderma 130, 157, 2006.
  • 10. BOLAN N.S., DURAISAMY V.P. Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: a review involving specific case studies. Aust. J. Soil Res. 41, 533, 2003.
  • 11. SZÁKOVÁ J., TLUSTOŠ P., PAVLÍKOVÁ D., HANČ A., BATYSTA M. Effect of addition of ameliorative materials on the distribution of As, Cd, Pb, and Zn in extractable soil fractions. Chem. Pap. 61, 276, 2007.
  • 12. MORAL R., GILKES R.J., MORENO-CASELLES J. A comparison of extractants for heavy metals in contaminated soils from Spain. Comm. Soil Sci. Plant Anal. 33, 2781, 2002.
  • 13. YOBOUET Y.A., ADOUBY K., TROKOUREY A., YAO B. Cadmium, copper, lead and zinc speciation in contaminated soils. Inter. J. Eng. Sci. Tech. 2, 802, 2010.
  • 14. HICKEY M.G., KITTRICK J.A. Chemical partitioning of cadmium, copper, nickel and zinc in soils and sediments containing high levels of heavy metals. J. Environ. Qual. 13, 372, 1984.
  • 15. ZERBE J., SOBCZYŃSKI T., ELBANOWSKA H., SIEPAK J. Speciation of heavy metals in bottom sediments of lakes. Pol. J. Environ. Stud. 8, 331, 1999.
  • 16. BORŮVKA L., HUAN-WEI C., KOZÁK J., KRIŠTOUFKOVÁ S. Heavy contamination of soil with cadmium, lead and zinc in the alluvium of the Litavka River. Rostl. Výr. 42, 543, 1996.
  • 17. KRÁLOVÁ L., SZÁKOVÁ J., KUBÍK Š., TLUSTOŠ P., BALÍK J. The variability of arsenic and other risk element uptake by individual plant species growing on contaminated soil. Soil Sediment Contam. 19, 617, 2010.
  • 18. SZÁKOVÁ J., MIHOLOVÁ D., TLUSTOŠ P., ŠESTÁKOVÁ I., FRKOVÁ Z. Effect of soil properties and sample preparation on extractable and soluble Pb and Cd fractions in soils. Agric. Sci. 3, 119, 2010 (doi:10.4236/as.2010.13015).
  • 19. SIMS J.R., HABY V.A. Simplified colorimetric determination of soil organic matter. Soil Sci. 112, 137, 1971.
  • 20. MEHLICH A. Mehlich 3 Soil Test Extractant: a modification of Mehlich 2 Extractant. Commun. Soil Sci. Plant Anal. 15, 1409, 1984.
  • 21. ISO 11260. Soil quality – determination of effective cation exchange capacity and base saturation level using barium chloride solution; International Organization for Standardization, 1994.
  • 22. MAYFIELD J.L., OZANNE L., MITCHELL C.C., SIMONNE E.H., SIBLEY J.L. Laboratory and greenhouse evaluation of quicklime sources for suitability as agricultural liming materials. Comm. Soil Sci. Plant Anal. 35, 1167, 2004.
  • 23. BUTORAC A., MESIĆ M., FILIPAN T., BUTORAC J., BAŠIĆ F., KISIĆ I. The influence of special natural amendments based on zeolite tuff and different lime materials on some soil chemical properties. Rostl. Výr. 48, 133, 2002.
  • 24. MEDA A.R., PAVAN M.A., CASSIOLATO M.E., MIYAZAWA M. Dolomite lime´s reaction applied on the surface of a sandy soil of the Northwest Paraná, Brazil. Braz. Arch. Biol. Technol. 45, 219, 2002.
  • 25. HEJCMAN M., SZÁKOVÁ J., SCHELLBERG J., ŠREK P., TLUSTOŠ P. The Rengen Grassland Experiment: soil contamination by trace elements after 65 years of Ca, N, P and K fertiliser application. Nutr. Cycl. Agroecosyst. 83, 39, 2009.
  • 26. UPRETY D., HEJCMAN M., SZÁKOVÁ J., KUNZOVÁ E., TLUSTOŠ P. Concentration of trace elements in arable soil after long-term application of organic and inorganic fertilizers. Nutr. Cycling Agroecosyst. 85, 241, 2009.
  • 27. SAHUQUILLO A., RIGOL A., RAURET G. Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. Trends Anal. Chem. 22, 152, 2003.
  • 28. SZÁKOVÁ J., TLUSTOŠ P., BALÍK J., PAVLÍKOVÁ D., VANĚK V. The sequential analytical procedure as a tool for evaluation of As, Cd and Zn mobility in soil. Fresen. J. Anal. Chem. 363, 594, 1999.
  • 29. DONG J., MAO W.H., ZHANG G.P., WU F.B., CAI Y. Root excretion and plant tolerance to cadmium toxicity – a review. Plant Soil Environ. 53, 193, 2007.
  • 30. MÜHLBACHOVÁ G., TLUSTOŠ P. Effects of liming on the microbial biomass and its activities in soils long-term contaminated by toxic elements. Plant Soil Environ. 52, 345, 2006.
  • 31. TRAKAL L., NEUBERG M., TLUSTOŠ P., SZÁKOVÁ J., TEJNECKÝ V., DRÁBEK O. Dolomite limestone application as a chemical immobilization of metal-contaminated soil. Plant Soil Environ. 57, 173, 2011.
  • 32. BRADL H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 277, 1, 2004.
  • 33. TLUSTOŠ P., SZÁKOVÁ J., KOŘÍNEK K., PAVLÍKOVÁ D., HANČ A., BALÍK J. The effect of liming on cadmium, lead and zinc uptake reduction by spring wheat grown in contaminated soil. Plant Soil Environ. 52, 16, 2006.
  • 34. VÁCHA R., PODLEŠÁKOVÁ E., NĚMEČEK J., POLÁČEK O. Immobilisation of As, Cd, Pb and Zn in agricultural soils by the use of organic and inorganic additives. Rostl. Výr. 48, 335, 2002.
  • 35. HERREN T., FELLER U. Transport of cadmium via xylem and phloem in maturing wheat shoots: comparison with the translocation of zinc, strontium and rubidium. Ann. Bot. 80, 623, 1997.
  • 36. TLUSTOŠ P., SZÁKOVÁ J., STÁRKOVÁ A., PAVLÍKOVÁ D. A comparison of sequential extraction procedures for fractionation of arsenic, cadmium, lead, and zinc in soil. Cent. Eur. J. Chem. 3, 830, 2005.
  • 37. GHARAIE H.A. Lead adsorption characteristics of selected calcareous soils of Iran and their relationship with soil properties. American-Eurasian J. Agric. Environ. Sci. 6, 637, 2009.
  • 38. FRIESL-HANL W., PLATZER K., HORAK O., GERZABEK M.H. Immobilising of Cd, Pb, and Zn contaminated arable soils close to a former Pb/Zn smelter: a field study in Austria over 5 years. Environ. Geochem. Health. 31, 581, 2009.
  • 39. ELKHATIB E.A., ELSHEBINY G.M., BALBA A.M. Lead sorption in calcareous soils. Environ. Pollut. 69, 269, 1991.
  • 40. WILSON S.C., LOCKWOOD P.V., ASHLEY P.M., TIGHE M. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environ. Pollut. 158, 1169, 2010.
  • 41. HUANG B., KUO S., BEMBENEK R. Availability to lettuce of arsenic and lead from trace element fertilizers in soil. Water Air Soil Pollut. 164, 223, 2005.
  • 42. HARTLEY W., EDWARDS R., LEPP N.W. Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long-term leaching tests. Environ. Pollut. 131, 495, 2004.
  • 43. PORTER S.K., SCHECKEL K.G., IMPELLITTERI C.A., RYAN J.A. Toxic metals in the environment: thermodynamic considerations for possible immobilization strategies for Pb, Cd, As, and Hg. Crit. Rev. Env. Sci. Technol. 34, 495, 2004.
  • 44. ADRIANO D.C. Trace elements in terrestrial environments – biogeochemistry, bioavailability, and risk of metals, 2nd ed.; Springer: New York, pp. 866, 2001.
  • 45. OTERO X.L., FERREIRA T.O., HUERTA-DÍAZ M.A., PARTITI C.S.M., SOUZA JR. V., VIDAL-TORRADO P., MACÍAS F. Geochemistry of iron and manganese in soils and sediments of a mangrove system, Island of Pai Matos (Cananeia – SP, Brazil). Geoderma 148, 318, 2009.
  • 46. ANONYMOUS. Public notice No. 13/1994 for the management of soil protection. Czech Ministry of the Environment, Prague, 1994 [In Czech].
  • 47. ANONYMOUS. Public notice No. 271/2009, which changes Public notice No. 474/2000 about determination requirements for fertilizers. Czech Ministry of Agriculture, Prague, 2009 [In Czech].

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-88eb165b-2d0d-4833-8a9a-3a9f8d7f7b1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.