PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 19 | 3 |

Tytuł artykułu

Changes in fruit yield and photosynthesis parameters in different olive cultivars (Olea europaea L.) under contrasting water regimes

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The evergreen tree olive (Olea europaea L.) is the only species of the genus Olea that produces edible fruits with high ecological and economic value. This tree species has developed a series of physiochemical mechanisms to tolerate drought stress and grow under adverse climatic environments. One of these mechanisms is photosynthesis activities, so that as yet little information achieved about the relations between olive production and photosynthetic parameters under drought conditions. An experiment was carried out during two consecutive years (2015–2017) to study the response of 20 different olive tree cultivars (Olea europaea L.) to drought stress. Several parameters like net photosynthetic rate (PN), stomatal conductance (GS), transpiration rate (TE), photosynthetic pigments (total chlorophyll, chlorophyll a, b and carotenoid) and fruit yield were measured. The results of combined analysis of variance for fruit yield and other measured traits showed that year, drought treatment, cultivar main effects and their interactions were highly significant. The results indicated that drought stress reduced all traits, however GS (42.80%), PN (37.21%) and TE (37.17%) significantly affected by drought. Lower reduction in photosynthetic performance (PN, GS and TE) in the cultivar T7 compared to other olive cultivars allowed them to maintain better fruit yield. Principal component analysis (PCA) identified two PCs that accounted for 82.04 and 83.27% of the total variation in photosynthetic parameters under optimal and drought stress conditions, respectively. Taken together, mean comparison, relative changes due to drought and biplot analysis revealed that cultivars ‘T7’, ‘Roghani’, ‘Koroneiki’, ‘Korfolia’ and ‘Abou-satl’ displayed better response against drought stress. According to our results, one olive cultivar namely ‘T7’, could be used in olive breeding programs to improve new high yielding cultivars with drought tolerance for use in the drought-prone environments.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

3

Opis fizyczny

p.135-147,fig.,ref.

Twórcy

  • Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
  • Horticulture Crops Research Department, Qazvin Agricultural and Natural Resources Research and Education Center, AREEO, Qazvin, Iran
autor
  • Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
autor
  • Department of Soil and Water Research, Zanjan Agricultural and Natural Resources Research and Education Center, AREEO, Zanjan, Iran
autor
  • Faculty of Agricultural Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
autor
  • Horticulture Crops Research Department, Qazvin Agricultural and Natural Resources Research and Education Center, AREEO, Qazvin, Iran

Bibliografia

  • Ahmadi, J., Pour‐Aboughadareh, A., Fabriki Ourang, S., Mehrabi, A.A., Siddique, K.H.M. (2018). Wild relatives of wheat: Aegilops–Triticum accessions disclose differential antioxidative and physiological responses to water stress. Acta Physiol. Plant., 40, 90. DOI: 10.1007/s11738-018-2673-0
  • Ahmed, C.B., Rouina, B.B., Sensoy, S., Boukhris, M., Abdallah, F.B. (2009). Changes in gas exchange, proline accumulation and antioxidative enzyme activities in three olive cultivars under contrasting water availability regimes. Environ. Exp. Bot., 67, 345–352. DOI: 10.1016/j.envexpbot.2009.07.006
  • Bacelar, E.A., Santos, D.L., Moutinho-Pereira, J.M., Gonçalves, B.C., Ferreira, H.F., Correia, C.M. (2006). Immediate responses and adaptative strategies of three olive cultivars under contrasting water availability regimes: changes on structure and chemical composition of foliage and oxidative damage. Plant. Sci., 170, 596–605. DOI: 10.1016/j.plantsci.2005.10.014
  • Bouchemal, K., Bouldjadj, R., Belbekri, M.N., Ykhlef, N., Djekoun, A. (2016). Differences in antioxidant enzyme activities and oxidative markers in ten wheat (Triticum durum Desf.) genotypes in response to drought, heat and paraquat stress. Arch. Agron. Soil. Sci., 63, 710–722. DOI: 10.1080/03650340.2016.1235267
  • Boussadia, O., Mariem, F.B., Mechri, B., Boussetta, W., Brahmn, M., El Hadjm S.B. (2008). Response to drought of two olive tree cultivars (cv. Koroneki and Meski). Sci Hortic., 116, 388–393. DOI: 10.1016/j.scienta.2008.02.016
  • Centritto, M., Lauteri, M., Monteverdi, M.C., Serraj, R. (2009). Leaf gas exchange, carbon isotope discrimination, and grain yield in contrasting rice genotypes subjected to water deficits during the reproductive stage. J. Exp. Bot., 60, 2325–39. DOI: 10.1093/jxb/erp123
  • Cochard, H., Coll, L., Roux, X.L., Amegilo, T. (2002). Unraveling the effects of plant hydraulics on stomatal closer during water stress in walnut. Plant. Physiol., 128, 282–290. DOI: 10.1104/pp.010400
  • Comas, L.H., Becker, S.R., Cruz, V.M. V., Byrne, P.F., Dierig, D.A. (2013). Root traits contributing to plant productivity under drought. Front. Plant Sci., 4, 1–16. DOI: 10.3389/fpls.2013.00442
  • Deng, X., Hu, Z.A., Wang, H.X., Wen, X.G., Kuang, T.Y. (2003). A comparison of photosynthetic apparatus of the detached leaves of the resurrection plant Boea hygrometrica with its non-tolerant relative Chirita heterotrichain response to dehydration and rehydration. Plant. Sci., 165, 851–861. DOI: 10.1016/S0168-9452(03)00284-X
  • Dias, M., Correia, S., Serodio, J., Silva, A.M.S., Freitas, H., Santos, C. (2018). Chlorophyll fluorescence and oxidative stress endpoints to discriminate olive cultivars tolerance to drought and heat episodes. Sci. Hortic., 231, 31–35. DOI: 10.1016/j.scienta.2017.12.007
  • Ergen, N.Z., Budak, H. (2009). Sequencing over 13000 expressed sequence tags from six subtractive cDNA libraries of wild and modern wheats following slow drought stress. Plant. Cell. Environ., 32, 220–236. DOI: 10.1111/j.1365-3040.2008.01915.x
  • FAOSTAT. (2015). Food and Agriculture Organization, FAOSTAT Database. Available at: http://faostat3fao.org/browse/Q/QC/E
  • Fernandes-Silva, A.A., Ferreira, T.C., Correia, C.M., Malheiro, A.C., Villalobos, F.J. (2010). Influence of different irrigation regimes on crop yield and water use efficiency of olive. Plant. Soil., 333, 35–47. DOI: 10.1007/s11104-010-0294-5
  • Fernandez, J.E., Moreno, F., Girón, I. F., Blázquez, O.M. (1997). Stomatal control of water use in olive tree leaves. Plant. Soil., 190, 179–192. DOI: 10.1023/A:1004293026973
  • Filippou, M., Fasseas, C., Karabourniotis, G. (2007). Photosynthetic characteristics of olive tree (Olea europaea) bark. Tree Physiol., 27, 977–984. DOI: 10.1093/treephys/27.7.977
  • Flexas, J., Medrano, H. (2002). Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann. Bot., 89, 183–189. DOI: 10.1093/aob/mcf027
  • Gholami, R., Sarikhani, H., Arji, I. (2016). Effects of Deficit Irrigation on Some Physiological and Biochemical Characteristics of Six Commercial Olive Cultivars in Field Conditions. Iranian J. Hortic. Sci. Technol. (IJHST), 17(1), 39–52.
  • Giorio, P., Sorrentino, G., d’Andria, R. (1999). Stomatal behaviour, leaf water status and photosynthetic response in field-grown olive trees under water deficit. Agric. Water Manag., 42, 95–104. DOI: 10.1016/S0098-8472(99)00023-4
  • Guerfel, M., Boujnah, D., Baccouri, B., Zarrouk, M. (2007). Evaluation of morphological and physiological traits for drought tolerance in 12 Tunisian olive varieties (Olea europaea L.). J. Agron., 6, 356–361.
  • Holding, D., Streich, A.M. (2013). Plant growth processes: Transpiration, photosynthesis, and respiration. University of Nebraska Cooperative Extension.
  • Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M., Somasundaram, R., Panneerselvam, R. (2009). Drought stress in plants: a review on morphological characteristics and pigments composition. Int. J. Agri. Biol., 11, 100–105.
  • Kadkhodaie, A., Razmjoo, J., Zahedi, M., Pessarakli, M. (2014). Selecting sesame genotypes for drought tolerance based on some physiochemical traits. Agron. J., 106, 111–118. DOI: 10.2134/agronj2013.0260
  • Lauteri, M., Haworth, M., Serraj, R., Monteverdi, M.C., Centritto, M. (2014). Photosynthetic diffusional constraints affect yield in drought stressed rice cultivars during flowering. PloS ONE, 9, e109054. DOI: 10.1371/journal.pone.0109054
  • Lichtenthaler, H.K., Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans., 11, 591–592.
  • Moriana, A., Villalobos, F., Fereres, J. (2002). Stomatal and photosynthetic responses of olive (Olea europaea L.) leaves to water deficits. Plant Cell Environ., 25, 395–405. DOI: 10.1046/j.0016-8025.2001.00822.x
  • Percival, G.C., Sheriffs, C.N. (2002). Identification of drought-tolerance woody perennials using chlorophyll fluorescence. J. Arboric., 28, 215–223.
  • Pinherio, C., Chaves, M.M. (2011). Photosynthesis and drought: can we make metabolic connections from available data? J. Exp. Bot., 63, 869–882. DOI: 10.1093/jxb/erq340
  • Pour-Aboughadareh, A., Ahmadi, J., Mehrabi, A.A., Etminan, A., Moghaddam, M., Siddique, K.H.M. (2017). Physiological responses to drought stress in wild relatives of wheat: implications for wheat improvement. Acta Physiol. Plant., 39, 106. DOI: 10.1007/s11738-017-2403-z
  • Pradhan, G., Prasad Vara Fritz, A.K., Kirkhan, M., Gill, B. (2012). Response of Aegilops species to drought stress during reproductive stage of development. Func. Plant Biol., 39, 51–59. DOI: 10.1071/FP11171
  • Sorrentio, G., Muzzaupo, I., Muccilli, S., Timpanaro, N., Russo, M.P., Guardo, M., Rapisarda, P., Romeo, F.V. (2016). New accessions of Italian table olives (Olea europaea): Characterization of genotypes and quality of brined products. Sci. Hortic., 213, 34–41. DOI: 10.1016/j.scienta.2016.10.016
  • Tognetti, R., d’Andria, R., Lavini, A., Morelli, G. (2006). The effect of deficit irrigation on crop yield and vegetative development of Olea europaea L. (cvs. Frantoio and Leccino). Eur. J. Agron., 25, 356–364. DOI: 10.1016/j.eja.2006.07.003

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-87b81972-f0a6-43eb-b770-6b5d0ae8fa45
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.