PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 16 | 1 |

Tytuł artykułu

Bat activity across the vertical gradient of an old-growth Sequoia sempervirens forest

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We investigated how bats use habitat structure along the vertical gradient of an old-growth Sequoia sempervirens (redwood) forest. Ground-based detection methods would underrepresent bats that use the canopy and above-canopy airspace in this forest as they reach far beyond practical netting and acoustic detection range. We equipped two tall trees with full spectrum automated bat detectors at treetop (108 m), lower crown (55 m), and ground level (5 m) from April 2008 to November 2009, excluding December and January. We sampled 1,365 detector nights, recorded 3,769 echolocation sequences (bat passes), and found 12 species, two of which, Lasiurus blossevillii and Tadarida brasiliensis, that had no prior documented presence in redwood forests. The maximum proportion of bat activity occurred at treetop, although ground level species diversity exceeded that of the lower crown and treetop, and species composition differed among locations. Non-Myotis species composed 95% of the calls at the treetop, 88% at lower crown, and 21% at ground level. Calls from Myotis species averaged 71% of all calls recorded at ground level compared to less than 4% at both lower crown and treetop. Activity declined markedly, but did continue, during the winter months we sampled. The combination of a temperate climate and observations of larger, migratory species during November, February, and March suggested the potential for resident populations or inland migrants overwintering in this forest. These findings emphasize the importance of sampling throughout the calendar year and including the full reach of the vertical habitat when quantifying bat activity in forests.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

16

Numer

1

Opis fizyczny

p.53-63,fig.,ref.

Twórcy

  • Department of Biological Sciences, Humboldt State University, Arcata, CA 95521, USA
  • Department of Forestry and Wildland Resources, Humboldt State University, Arcata, CA 95521, USA
  • Department of Biological Sciences, Humboldt State University, Arcata, CA 95521, USA

Bibliografia

  • 1. I. Ahlén , and H. J. Baagøe . 1999. Use of ultrasound detectors for bat studies in Europe: experiences from field identification, surveys, and monitoring. Acta Chiropterologica, 1: 137–150.
  • 2. E. Anthony , M. Stack , and T. Kunz . 1981. Night roosting and the nocturnal time budget of the little brown bat, Myotis lucifugus: effects of reproductive status, prey density, and environmental conditions. Oecologia, 51: 151–156.
  • 3. M. Avery 1985. Winter activity of pipistrelle bats. The Journal of Animal Ecology, 54: 721–738.
  • 4. R. W. Barbour , and W. H. Davis . 1969. Bats of America. University Press of Kentucky, Lexington, 286 pp.
  • 5. E. Bernard 2001. Vertical stratification of bat communities in primary forests of Central Amazon, Brazil. Journal of Tropical Ecology, 17: 115–126.
  • 6. P. A. Bradshaw 1996. The physical nature of vertical forest habitat and its importance in shaping bat species assemblages. Pp. 199–212, in Bats and forests symposium ( R. M. R. Barclay and R. M. Brigham , eds.). British Columbia Ministry of Forests, Victoria, British Columbia, Canada, 292 pp.
  • 7. R. M. Brigham 1991. Flexibility in foraging and roosting behaviour by the big brown bat (Eptesicus fuscus). Canadian Journal of Zoology, 69: 117–121.
  • 8. H. G. Broders , C. S. Findlay , and L. Zheng . 2004. Effects of clutter on echolocation call structure of Myotis septentrionalis and M. lucifugus. Journal of Mammalogy. 85: 273–281.
  • 9. P. Cryan 2003. Seasonal distribution of migratory tree bats (Lasiurus and Lasionycteris) in North America. Journal of Mammalogy, 84: 579–593.
  • 10. M. C. De Oliveira 1998. Towards standardized descriptions of the echolocation calls of microchiropteran bats: pulse design terminology for seventeen species from Queensland. Australian Zoologist, 30: 405–411.
  • 11. M. B. Fenton 1970. A technique for monitoring bat activity with results obtained from different environments in southern Ontario. Canadian Journal of Zoology, 48: 847–851.
  • 12. M. B. Fenton 2003. Aerial-feeding bats: getting the most out of echolocation. Pp. 350–355, in Echolocation in bats and dolphins ( J. A. Thomas , C. F. Moss , and M. Vater , eds.). University of Chicago Press, Chicago, ICA, 631 pp.
  • 13. C. Francis 1994. Vertical stratification of fruit bats (Pteropodidae) in lowland dipterocarp rainforest in Malaysia. Journal of Tropical Ecology, 10: 523–530.
  • 14. W. L. Gannon , R. E. Sherwin , and S. Haymond . 2003. On the importance of articulating assumptions when conducting acoustic studies of habitat use by bats. Wildlife Society Bulletin, 31: 45–61.
  • 15. S. Gellman , and W. Zielinski . 1996. Use by bats of oldgrowth redwood hollows on the north coast of California. Journal of Mammalogy, 77: 255–265.
  • 16. J. Harris 2005. California wildlife habitat relationships system: Tadarida brasiliensis. In California De partment of Fish and Game & California Interagency Wildlife Task Group, Sacramento, CA, USA. Available at https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CC0QFjAA&url=https%3A%2F%2Fnrm.dfg.ca.gov%2FFileHandler.ashx%3FDocumentVersionID=17566&ei=zKdRU_j2LNixyATsy4GgAw&usg=AFQjCNHDRax BpC6-2mrDkLF45zBVo12Aug&bvm=bv.65058239,d.aWw.
  • 17. J. P. Hayes , and J. C. Gruver . 2000. Vertical stratification of bat activity in an old-growth forest in Western Wash ington. Northwest Science, 74: 102–108.
  • 18. M. Henry , P. Barrire , A. Gautier-Hion , and M. Colyn . 2004. Species composition, abundance and vertical stratification of a bat community (Megachiroptera: Pteropodidae) in a West African rain forest. Journal of Tropical Ecology, 20: 21–29.
  • 19. M. C. Kalcounis , K. A. Hobson , R. M. Brigham , and K. R. Hecker . 1999. Bat activity in the boreal forest: importance of stand type and vertical strata. Journal of Mammalogy, 80: 673–682.
  • 20. E. K. V. Kalko , and H.-U. Schnitzler . 1993. Plasticity in echolocation signals of European pipistrelle bats in search flight: implications for habitat use and prey detection. Behavioral Ecology and Sociobiology, 33: 415–428.
  • 21. M. Lacki 1984. Temperature and humidity-induced shifts in the flight activity of little brown bats. The Ohio Journal of Science, 84: 264–266.
  • 22. M. Mazurek 2004. A maternity roost of Townsend's big-eared bats (Corynorhinus townsendii) in coast redwood basal hollows in northwestern California. Northwestern Naturalist, 85: 60–62.
  • 23. M. Mazurek , and W. Zielinski . 2004. Individual legacy trees influence vertebrate wildlife diversity in commercial forests. Forest Ecology and Management, 193: 321–334.
  • 24. J. M. Menzel , M. A. Menzel , J. C. Kilgo , W. M. Ford , J. W. Edwards , and G. F. McCracken . 2005. Effect of habitat and foraging height on bat activity in the coastal plain of South Carolina. Journal of Wildlife Management, 69: 235–245.
  • 25. C. E. Moreno , and G. Halffter . 2000. Assessing the completeness of bat biodiversity inventories using species accumulation curves. Journal of Applied Ecology, 37: 149–158.
  • 26. M. J. O'Farrell , and W. L. Gannon . 1999. A comparison of acoustic versus capture techniques for the inventory of bats. Journal of Mammalogy, 80: 24–30.
  • 27. M. O'Farrell , C. Corben , W. Gannon , and B. Miller . 1999. Confronting the dogma: a reply. Journal of Mammalogy, 80: 297–302.
  • 28. M. K. Obrist 1995. Flexible bat echolocation: the influence of individual, habitat and conspecifics on sonar signal design. Behavioral Ecology and Sociobiology, 36: 207–219.
  • 29. S. Parsons 1996. A comparison of the performance of a brand of broad-band and several brands of narrow-band bat detectors in two different habitat types. Bioacoustics, 7: 33–43.
  • 30. S. Parsons , and G. Jones . 2000. Acoustic identification of twelve species of echolocating bat by discriminant function analysis and artificial neural networks. The Journal of Experimental Biology, 203: 2641.
  • 31. S. Parsons , and J. M. Szewczak . 2009. Detecting, recording, and analyzing the vocalizations of bats. Pp. 91–111, in Ecological and behavioral methods for the study of bats, 2nd edition ( T. Kunz and S. Parsons , eds.). The Johns Hopkins University Press, Baltimore, MD, 900 pp.
  • 32. K. J. Patriquin , L. K. Hogberg , B. J. Chruszcz , and R. M. R. Barclay . 2003. The influence of habitat structure on the ability to detect ultrasound using bat detectors. Wildlife Society Bulletin, 31: 475–481.
  • 33. M. J. R. Pereira , J. T. Marques , and J. M. Palmeirim . 2010. Vertical stratification of bat assemblages in flooded and unflooded Amazonian forests. Current Zoology, 56: 469–478.
  • 34. PRISM Climate Group. 2013. Oregon State University. http://prism.oregonstate.edu. Created April 30, 2013.
  • 35. D. Purdy 2002. Bat use of old-growth redwood basal hollows: a study of capture methods and species use of redwoods. M.Sci. Thesis, Humboldt State University, Arcata, CA, 51 pp.
  • 36. C. J. Ralph , G. Hunt , M. Raphael , and J. F. Piatt (technical eds.). 1995. Ecology and conservation of the marbled murrelet (General Technical Report PSE-GTR-152 ed.). Pacific Southwest Research Station, U.S.D.A., Albany, CA, 420 pp.
  • 37. A. L. Roberts 2008. Bat use of old growth redwood basal hollows with increasing isolation in contiguous, remnant, and legacy forest stands. M.Sci. Thesis, Humboldt State University, Arcata, CA, 78 pp.
  • 38. J. O. Sawyer , S. C. Sillett , J. H. Popenoe , A. Labanca , T. Sholars , and D. L. Largent . 2000. Characteristics of redwood forests. Pp. 37–79, in The redwood forest. History, ecology, and conservation of the coast redwoods ( R. F. Noss , ed.). Island Press, Washington, D.C., 339 pp.
  • 39. S. C. Sillett , and R. Van Pelt . 2007. Trunk reiteration promotes epiphytes and water storage in an old-growth redwood forest canopy. Ecological Monographs, 77: 335–359.
  • 40. S. C. Sillett , R. Van Pelt , G. W. Koch , A. R. Ambrose , A. L. Carroll , M. E. Antoine , and B. M. Mifsud . 2010. Increasing wood production through old age in tall trees. Forest Ecology and Management, 259: 976–994.
  • 41. M. J. Soberon , and B. Llorente . 1993. The use of species accumulation functions for the prediction of species richness. Conservation Biology, 7: 480–488.
  • 42. J. M. Szewczak 2002. Advanced analysis techniques for identifying bat species. Pp. 121–127, in Bat echolocation research: tools, techniques and anaylsis ( R. M. Brigham , E. K. V. Kalko , G. Jones , S. Parsons , and H. J. G. A. Lim Pens , eds.). Bat Conservation International, Austin, TX, 167 pp. Google Scholar
  • 43. J. M. Szewczak , A. J. Corcoran , J. Kennedy , P. C. Ormsbee , and T. E. Weller . 2011. Echolocation call characteristics of western US bats. Humboldt State University Bat Lab. h ttp://www.sonobat.com/download/WesternUS_Acoustic_Table_Mar2011.pdf.
  • 44. T. Vaughan 1966. Morphology and flight characteristics of molossid bats. Journal of Mammalogy, 47: 249–260.
  • 45. T. J. Weller 2007. Assessing population status of bats in forests: challenges and opportunities. Pp. 263–291, in Bats in forests: conservation and management ( M. Lacki , J. P. Hayes , and A. Kurta , eds.). The Johns Hopkins University, Balti more, MD, 329 pp.
  • 46. T. Weller , and C. Zabel . 2002. Variation in bat detections due to detector orientation in a forest. Wildlife Society Bulletin, 30: 922–930.
  • 47. W. Zielinski , and S. Gellman . 1999. Bat use of remnant old growth redwood stands. Conservation Biology, 13: 160–167.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-862de223-7601-419f-a636-c6d625881499
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.