PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 62 | 1 |

Tytuł artykułu

DNA microarray gene expression profile of Mycobacterium tuberculosis when exposed to osthole

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Tuberculosis (TB), affecting one-third of the global population, kills an estimated two to three million people every year. The development of drug resistance is becoming a serious threat to any attempt to control this disease, which underscores the need for new agents targeting Mycobacterium tuberculosis (M. tuberculosis). Osthole (7-methoxy-8-isopentenoxycoumarin) is a coumarin derivative present in many medicinal plants. Previous studies have shown that osthole possesses antimycobacterial effects, however, the action mechanism of osthole is unclear. In the study, we used a commercial oligonucleotide microarray to determine the overall transcriptional response of M.tuberculosis H37Rv triggered by exposure to osthole. Analysis of the microarray data revealed that a total of 478 genes were differentially regulated by osthole. Of these, 241 genes were upregulated, and 237 genes were downregulated. Some of the important genes that were significantly regulated are related to different pathways such as fumarate reductase, class I peroxidase, cell wall, nitrate respiration, and protein synthesis. Real-time quantitative RT-PCR was performed for chosen genes to validate the microarray results. To our knowledge, this genome-wide transcriptomics approach has produced the first insights into the response of M. tuberculosis when exposed to osthole.

Wydawca

-

Rocznik

Tom

62

Numer

1

Opis fizyczny

p.23-30,fig.,ref.

Twórcy

autor
  • Life Science Department, ChangChun Normal University, Changchun 130062, China
  • Bio-reactor Center, Jilin Agricultural University, Changchun, China
autor
  • Key Laboratory for Zoonosis Research, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Ministry of Education, Changchun 130062, China
  • Department of Food Quality and Safety, College of Quartermaster Technology, Jilin University, Changchun 130062, China
autor
  • Key Laboratory for Zoonosis Research, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Ministry of Education, Changchun 130062, China
autor
  • Key Laboratory for Zoonosis Research, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Ministry of Education, Changchun 130062, China
autor
  • Key Laboratory for Zoonosis Research, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Ministry of Education, Changchun 130062, China
autor
  • Key Lab for New Drug Research of TCM, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
autor
  • Key Laboratory for Zoonosis Research, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Ministry of Education, Changchun 130062, China

Bibliografia

  • Barry. 2004. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J. Biol. Chem. 279: 40174–40184.
  • Betts J.C., A. McLaren, M.G. Lennon, F.M. Kelly, P.T. Lukey, S.J. Blakemore and K. Duncan. 2003. Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated Mycobacterium tuberculosis. Antimicrob. Agents. Chemother. 47: 2903–2913.
  • Betts J.C., P.T. Lukey, L.C. Robb, R.A. McAdam and K. Duncan. 2002. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 43: 717–731.
  • Chen M, L. Zhai, S.B. Christensen, T.G. Theander and A. Kharazmi. 2001. Inhibition of fumarate reductase in Leishmania major and L. donovani by chalcones. Antimicrob. Agents. Chemother. 45: 2023–2029.
  • Dennis P.P. 1976. Effects of chloramphenicol on the transcriptional activities of ribosomal RNA and ribosomal protein genes in Escherichia coli. J. Mol. Biol.108: 535–546.
  • Dubey V.S., T.D. Sirakova and P.E. Kolattukudy. 2002. Disruption of msl3 abolishes the synthesis of mycolipanoic and mycolipenic acids required for polyacyltrehalose synthesis in Mycobacterium tuberculosis H37Rv and causes cell aggregation. Mol. Microbiol. 45: 1451–1459.
  • Dubourdieu, M. and J.A. DeMoss. 1992. The narJ gene product is required for biogenesis of respiratory nitrate reductase in Escherichia coli. J. Bacteriol. 174: 867–872.
  • de la Fuente A., J.F. Martín, A. Rodríguez-García and P. Liras. 2004. Two proteins with ornithine acetyltransferase activity show different functions in Streptomyces clavuligerus: Oat2 modulates clavulanic acid biosynthesis in response to arginine. J. Bacteriol. 186: 6501–6507.
  • Domenech P., M.B. Reed and C.E. 3rd. Barry. 2005. Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect. Immun. 73: 3492–3501.
  • Emerson J.E., R.A. Stabler, B.W. Wren and N.F. Fairweather. 2008. Microarray analysis of the transcriptional responses of Clostridium difficile to environmental and antibiotic stress. J. Med. Microbiol. 57: 757–764.
  • Figueroa M., I. Rivero-Cruz, B. Rivero-Cruz, R. Bye, A. Navarrete and R. Mata. 2007.Constituents, biological activities and quality control parameters of the crude extract and essential oil from Arracacia tolucensis var. Multifida. J. Ethnopharmacol. 113: 125–131.
  • Franzblau S.G., R.S. Witzig, J.C. McLaughlin, P. Torres, G. Madico, A. Hernandez, M.T. Degnan, M.B. Cook, V.K. Quenzer, R.M. Ferguson and others. 1998. Rapid low-technology MIC determination with clinical, Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J. Clin. Microbiol. 36: 362–366.
  • Frota C.C., D.M. Hunt, R.S. Buxton, L. Rickman, J. Hinds, K. Kremer, D. van Soolingen and M.J. Colston. 2004. Genome structure in the vole bacillus, Mycobacterium microti, a member of the Mycobacterium tuberculosis complex with a low virulence for humans. Microbiology 150: 1519–1527.
  • Gillespie J., L.L. Barton and E.W. Rypka. 1988. Influence of oxygen tension on the respiratory activity of Mycobacterium phlei. J. Gen. Microbiol. 134: 247–252.
  • Golby P., K.A. Hatch, J. Bacon, R. Cooney, P. Riley, J. Allnutt, J. Hinds, J. Nunez, P.D. Marsh, R.G. Hewinson and others. 2007. Comparative transcriptomics reveals key gene expression differences between the human and bovine pathogens of the Mycobacterium tuberculosis complex. Microbiology 153: 3323–3336.
  • Gordhan B.G., D.A. Smith, H. Alderton, R.A. McAdam, G.J. Bancroff and V. Mizrahi. 2002. Construction and phenotypic characterization of an auxotrophic mutant of Mycobacterium tuberculosis defective in l-Arginine biosynthesis. Infect. Immun. 70: 3080–3084.
  • Grassi M., E. Volpe, V. Colizzi and F. Mariani. 2006. An improved, real-time PCR assay for the detection of GC-rich and low abundance templates of Mycobacterium tuberculosis. J. Microbiol. Methods 64: 406–410.
  • Hatzios S.K., M.W. Schelle, C.M. Holsclaw, C.R. Behrens, Z. Botyanszki, F.L. Lin, B.L. Carlson, P. Kumar, J.A. Leary and C.R. Bertozzi. 2009. PapA3 is an acyltransferase required for polyacyltrehalose biosynthesis in Mycobacterium tuberculosis. J. Biol. Chem. 284: 12745–12751.
  • Hovel-Miner G., S.P. Faucher, X. Charpentier and H.A. Shuman. 2010. ArgR-regulated genes are derepressed in the legionella-containing vacuole. J. Bacteriol. 192: 4504–4516.
  • Huang R.L., C.C. Chen, Y.L. Huang, D.J. Hsieh, C.P. Hu, C.F. Chen and C. Chang. 1996. Osthole increases glycosylation of hepatitis B surface antigen and suppresses the secretion of hepatitis B virus in vitro. Hepatology 24: 508–515.
  • Jiménez-Arellanes A., M. Meckes, R. Ramírez, J. Torres and J. Luna-Herrera. 2003. Activity against multidrug-resistant Mycobacterium tuberculosis in Mexican plants used to treat respiratory diseases. Phytother. Res. 17: 903–908.
  • Joseph B., K. Przybilla, C. Stühler, K. Schauer, J. Slaghuis, T.M. Fuchs, W. Goebel. 2006. Identification of Listeria monocytogenes genes contributing to intracellular replication by expression profiling and mutant screening. J. Bacteriol. 188: 556–568.
  • Liang J., F. Zeng, A. Guo, L. Liu, N. Guo, L. Li, J. Jin, X. Wu, M. Liu, D. Zhao, Y. Li, Q. Jin and L. Yu, 2011. Microarray analysis of the chelerythrine-induced transcriptome of Mycobacterium tuberculosis. Curr. Microbiol. 62: 1200–1208.
  • Liu J.H., S. Zschocke, E. Reininger and R. Bauer. 1998. Inhibitory effects of Angelica pubescens f. biserrata on 5-lipoxygenase and cyclooxygenase. Planta. Med. 64: 525–529.
  • Malm S., Y. Tiffert, J. Micklinghoff, S. Schultze, I. Joost, I. Weber, S. Horst, B. Ackermann, M. Schmidt, W. Wohlleben and others. 2009. The roles of the nitrate reductase NarGHJI, the nitrite reductase NirB D and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis. Microbiology 155: 1332–1339.
  • Matsuda H., N. Tomohiro, Y. Ido and M. Kubo. 2002. Anti-allergic effects of cnidii monnieri fructus (dried fruits of Cnidium monnieri) and its major component, osthol. Biol. Pharm. Bull. 25: 809–812.
  • Nishimura T., H. Teramoto, A.A. Vertès, M. Inui and H. Yukawa. 2008. ArnR, a novel transcriptional regulator, represses expression of the narKGHJI operon in corynebacterium glutamicum. J. Biochem.190: 3264–3273.
  • Nishimura T., A.A. Vertès, Y. Shinoda, M. Inui, H. Yukawa. 2007. Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl. Microbiol. Biotechnol. 75: 889–897.
  • Nunn P., B. Williams, K. Floyd, C. Dye, G. Elzinga and M. Raviglione. 2005. Tuberculosis control in the era of HIV. Nat. Rev. Immunol. 5: 819–826.
  • Omura S., H. Miyadera, H. Ui, K. Shiomi, Y. Yamaguchi, R. Masama, T. Nagamitsu, D. Takano, T. Sunazuka, A. Harder and others. 2001. An anthelmintic compound, nafuredin, shows selective inhibition of complex I in helminth mitochondria. Proc. Natl. Acad. Sci. USA 98: 60–62.
  • Ormerod L.P. 2005. Multidrug-resistant tuberculosis (MDR-TB): epidemiology, prevention and treatment. Br. Med. Bull. 17–24.
  • Raman S., T. Song, X. Puyang, S. Bardarov, W.R. Jr. Jacobs and R.N. Husson. 2001. The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis. J. Bacteriol. 183: 6119–6125.
  • Raviglione M.C. 2003. The TB epidemic from 1992 to 2002. Tuberculosis (Edinb) 83: 4–14.
  • Rohde K.H., R.B. Abramovitch and D.G. Russell. 2007. Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues. Cell Host Microbe. 2: 352–364.
  • Schnappinger D., S. Ehrt, M.I. Voskuil, Y. Liu, J.A. Mangan, I.M. Monahan, G. Dolganov, B. Efron, P.D. Butcher, C. Nathan and others. 2003. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med. 198: 693–704.
  • Silberbach M., M. Schäfer, A.T. Hüser, J. Kalinowski, A. Pühler, R. Krämer and A. Burkovski. 2005. Adaptation of Corynebacterium glutamicum to ammonium limitation: a global analysis using transcriptome and proteome techniques. Appl. Environ. Microbiol. 71: 2391–2402.
  • Slayden R.A., D.L. Knudson and J.T. Belisle. 2006. Identification of cell cycle regulators in Mycobacterium tuberculosis by inhibition of septum formation and global transcriptional analysis. Microbiology 152: 1789–1797.
  • Sohaskey C.D. and L.G. Wayne. 2003. Role of narK2X and narGHJI in Hypoxic Upregulation of Nitrate Reduction by Mycobacterium tuberculosis. J. Bacteriol. 185: 7247–7256.
  • Tan M.P., P. Sequeira, W.W. Lin, W.Y. Phong, P. Cliff, et al. 2010. Nitrate respiration protects hypoxic Mycobacterium tuberculosis against acid- and reactive species stresses. PLoS ONE 5(10): e13356. doi: 10.1371/journal.pone.00133356.
  • Wang S., F. Liu and B. Zhao. 2000. Study on mRNA differential display in Mycobacterium tuberculosis H37Rv and H37Ra. Zhonghua Jie He He Hu Xi Za Zhi 23: 669–671.
  • Yang L.L., M.C. Wang, L.G. Chen and C.C. Wang. 2003. Cytotoxic activity of coumarins from the fruits of Cnidium monnieri on leukemia cell lines. Planta. Med. 69: 1091–1095.
  • Yu L., H. Xiang, J. Fan, D. Wang, F. Yang, N. Guo, Q. Jin and X. Deng. 2008. Global transcriptional response of Staphylococcus aureus to rhein, a natural plant product. J. Biotechnol. 135: 304–308.
  • Yu L., N. Guo, R. Meng, B. Liu, X. Tang, J. Jin, Y. Cui and X. Deng. 2010. Allicin-induced global gene expression profile of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 88: 219–229.
  • Yu L., W. Zhang, L. Wang, J. Yang, T. Liu, J. Peng, W. Leng, L. Chen, R. Li, Q. Jin. 2007. Transcriptional profiles of the response to ketoconazole and amphotericin B in Trichophyton rubrum. Antimicrob. Agents Chemother. 51: 144–153.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-857cc2fe-869f-4d53-97f6-c88c29cbbf71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.