PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 78 | 1 |

Tytuł artykułu

Possible role of hippocampal GPR55 in spatial learning and memory in rats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Endocannabinoids (eCBs) are involved in the hippocampal mechanisms of spatial learning and memory in rats. Although eCBs exert many of their actions on spatial learning and memory via CB1 receptors, the putative cannabinoid receptor GPR55 (expressed in the hippocampus, cortex, forebrain, cerebellum and striatum) seems to be also involved. To investigate the potential role of GPR55 in spatial learning and memory, Wistar rats received bilateral infusions of lysophosphatidylinositol (LPI, GPR55-agonist) into the hippocampus 5-minutes before training-phase in the Barnes-maze (BM). This manipulation increased the use of serial navigation while preventing the learning of spatial navigation strategy and decreasing the use of random activity to find the escape-tunnel in the BM. In contrast, CID16020046 (GPR55-antagonist) increased the use of random activity at the expense of spatial and serial navigation strategies. Finally, CID16020046 significantly reduced the time spent in the target zone during a retention test. Our results suggest: (i) a potential role of GPR55 in developing navigation strategies; (ii) a prospective function for LPI acting in hippocampal CA1 (probably via GPR55) to perform a serial navigation strategy; and (iii) a potential role of GPR55 in the mechanisms involved in spatial memory (object placement memory).

Słowa kluczowe

Wydawca

-

Rocznik

Tom

78

Numer

1

Opis fizyczny

p.41-50,fig.,ref.

Twórcy

  • Departamento de Fisiología y Farmacología, Centro de Ciencias Basicas, Universidad Autonoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags., Mexico
  • Grupo de Neurociencias, Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico
  • Laboratorio de Neurogenomica Cognitiva, Coordinacion de Psicofisiología, Facultad de Psicología, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
  • Grupo de Neurociencias, Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico
  • Grupo de Neurociencias, Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico

Bibliografia

  • Barnes CA (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol 93: 74–104.
  • Basavarajappa BS, Nagre NN, Xie S, Subbanna S (2014) Elevation of endogenous anandamide impairs LTP, learning, and memory through CB1 receptor signaling in mice. Hippocampus 24: 808–818.
  • Brighton PJ, McDonald J, Taylor AH, Challiss RA, Lambert DG, Konje JC et al. (2009) Characterization of anandamide-stimulated cannabinoid receptor signaling in human ULTR myometrial smooth muscle cells. Mol Endocrinol 23: 1415–1427.
  • Bonini JA, Borowsky BE, Adham N, Boyle N, Thompson TO (2002) Methods of identifying compounds that bind to SNORF25 receptors. U.S. Patent 6,468,756.
  • Chersi F, Burgess N (2015) The Cognitive Architecture of Spatial Navigation: Hippocampal and Striatal Contributions. Neuron 88: 64–77.
  • Cohen SJ, Munchow AH, Rios LM, Zhang G, Asgeirsdóttir HN, Stackman RW Jr (2013) The rodent hippocampus is essential for nonspatial object memory. Curr Biol 23: 1685–1690.
  • Doeller CF, King JA, Burgess N (2008) Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proc Natl Acad Sci U S A 105: 5915–5920.
  • Evensmoen HR, Lehn H, Xu J, Witter MP, Nadel L, Håberg AK (2013) The anterior hippocampus supports a coarse, global environmental representation and the posterior hippocampus supports fine-grained, local environmental representations. J Cogn Neurosci 25: 1908–1925.
  • Fouquet C, Babayan BM, Watilliaux A, Bontempi B, Tobin C, Rondi-Reig L (2013) Complementary Roles of the Hippocampus and the Dorsomedial Striatum during Spatial and Sequence-Based Navigation Behavior. PloS One 8: e67232.
  • Good M, Honey RC (1997) Dissociable effects of selective lesions to hippocampal subsystems on exploratory behavior, contextual learning, and spatial learning. Behav Neurosci 111: 487–493.
  • Hampson RE, Simeral JD, Deadwyler SA (1999) Distribution of spatial and nonspatial information in dorsal hippocampus. Nature 402: 610–614.
  • Harloe JP, Thorpe AJ, Lichtman AH (2008) Differential endocannabinoid regulation of extinction in appetitive and aversive Barnes maze tasks. Learn Mem 15: 806–809.
  • Hashimotodani Y, Ohno-Shosaku T, Maejima T, Fukami K, Kano M (2008) Pharmacological evidence for the involvement of diacylglycerol lipase in depolarization-induced endocanabinoid release, Neuropharmacol 54: 58–67.
  • Henstridge CM, Balenga NA, Schröder R, Kargl JK, Platzer W, Martini L, Arthur S et al. (2010) GPR55 ligands promote receptor coupling to multiple signalling pathways. Br J Pharmacol 160: 604–14.
  • Hernández-Tristán R, Arévalo C, Canals S, Leret ML (2000) The effects of acute treatment with delta9-THC on exploratory behaviour and memory in the rat. J Physiol Biochem 56: 17–24.
  • Hurst K, Badgley C, Ellsworth T, Bell S, Friend L, Prince B, Welch J, Cowan Z, Willaimson R, Lyon C, Anderson B, Poole B, Christensen M, McNeil M, Call J, Edwards JG (2017) A putative lysophosphatidylinositol receptor GPR55 modulates hippocampal synaptic plasticity. Hippocampus 27: 985–998.
  • Ito HT, Zhang SJ, Witter MP, Moser EI, Moser MB (2015) A prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation. Nature 522: 50–55.
  • Jung KM, Astarita G, Zhu C, Wallace M, Mackie K, Piomelli D (2007) A key role for diacylglycerol lipase-α in metabotropic glutamate receptor-dependent endocannabinoid mobilization. Mol Pharmacol 72: 612–621.
  • Kapur A, Zhao P, Sharir H, Bai Y, Caron MG, Barak LS, et al. (2009) Atypical responsiveness of the orphan receptor GPR55 to cannabinoid ligands. J Biol Chem 284: 29817–29827.
  • Kargl J, Brown AJ, Andersen L, Dorn G, Schicho R, Waldhoer M, Heinemann A (2013) A selective antagonist reveals a potential role of G protein-coupled receptor 55 in platelet and endothelial cell function. J Pharmacol Exp Ther 346: 54–66.
  • Kramar C, Loureiro M, Renard J, Steven RL (2017) Palmitoylethanolamide Modulates GPR55 Receptor Signaling in the Ventral Hippocampus to Regulate Mesolimbic Dopamine Activity, Social Interaction, and Memory Processing. Cannabis and Cannabinoid Res 2: 8–20.
  • Lauckner JE, Jensen JB, Chen HY, Lu HC, Hille B, Mackie K (2008). GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci U S A 105: 2699–2704.
  • Manns JR, Eichenbaum H (2009) A cognitive map for object memory in the hippocampus Learn Mem 16: 616–624.
  • Marichal-Cancino BA, Fajardo-Valdes A, Ruiz-Contreras AE, Méndez-Díaz M, Prospéro-García O (2017) Advances in the Physiology of GPR55 in the Central Nervous System. Curr Neuropharmacol 15: 771–778.
  • Marichal-Cancino BA, Manrique-Maldonado G, Altamirano-Espinoza AH, Ruiz-Salinas I, González-Hernández A, Maassenvandenbrink A, Villalón CM (2013) Analysis of anandamide- and lysophosphatidylinositol-induced inhibition of the vasopressor responses produced by sympathetic stimulation or noradrenaline in pithed rats. Eur J Pharmacol 721: 168–177.
  • Marichal-Cancino BA, Sánchez-Fuentes A, Méndez-Díaz M, Ruiz-Contreras AE, Prospéro-García O (2016) Blockade of GPR55 in the dorsolateral striatum impairs performance of rats in a T-maze paradigm. Behav Pharmacol 27: 393–396.
  • McGrath JC, Drummond GB, McLachlan EM, Kilkenny C, Wainwright CL (2010) Guidelines for reporting experiments involving animals: the ARRIVE guidelines. Br J Pharmacol 160: 1573–1576.
  • Miyoshi E, Wietzikoski EC, Bortolanza M, Boschen SL, Canteras NS, Izquierdo I, Da Cunha C (2012) Both the dorsal hippocampus and the dorsolateral striatum are needed for rat navigation in the Morris water maze. Behav Brain Res 226: 171–178.
  • Monet M, Gkika D, Lehen’kyi V, Pourtier A, Vanden Abeele F, Bidaux G, Juvin V, Rassendren F, Humez S, Prevarsakaya N (2009) Lysophospholipids stimulate prostate cancer cell migration via TRPV2 channel activation.Biochim Biophys Acta 1793: 528–539.
  • Morena M, De Castro V, Gray JM, Palmery M, Trezza V, Roozendaal B, Hill MN, Campolongo P (2015) Training-associated emotional arousal shapes endocannabinoid modulation of spatial memory retrieval in rats. J Neurosci 35: 13962–13974.
  • Pan JP, Zhang HQ, Wei-Wang, Guo YF, Na-Xiao, Cao XH, Liu LJ (2011) Some subtypes of endocannabinoid/endovanilloid receptors mediate docosahexaenoic acid-induced enhanced spatial memory in rats. Brain Res 1412: 18–27.
  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. 6th ed. San Diego: Elsevier Academic Press.
  • Rahimi A, Hajizadeh-Moghaddam A, Roohbakhsh A (2015) Central administration of GPR55 receptor agonist and antagonist modulates anxiety-related behaviors in rats. Fundam Clin Pharmacol 29: 185–190.
  • Regier PS, Amemiya S, Redish AD (2015) Hippocampus and subregions ofthe dorsal striatum respond differently to a behavioral strategy change on a spatial navigation task. J Neurophysiol 114: 1399–1416.
  • Rojo ML, Rodriguez-Gaztelumendi A, Fowler CJ (2012) Lysophosphatidylinositol stimulates [³⁵S]GTPγS binding in the rat prefrontal cortex and hippocampus. Neurochem Res 37: 1037–1042.
  • Rueda-Orozco PE, Soria-Gomez E, Montes-Rodriguez CJ, Martínez-Vargas M, Galicia O, Navarro L, Prospero-García O (2008) A potential function of endocannabinoids in the selection of a navigation strategy by rats. Psychopharmacology (Berl) 198: 565–576.
  • Ryberg E, Larsson N, Sjögren S, Hjorth S, Hermansson N-O, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152:1092–1101.
  • Soria-Gómez E, Matias I, Rueda-Orozco PE, Cisneros M, Petrosino S, Navarro L, Di Marzo V, Prospéro-García O (2007) Pharmacological enhancement of the endocannabinoid system in the nucleus accumbens shell stimulates food intake and increases c-Fos expression in the hypothalamus. Br J Pharmacol. 151: 1109–1116.
  • Swanson LW (2004). Brain Maps: Structure of the rat brain. 3a Edition. San Diego: CA, Elsevier Academic Press. At http://larrywswanson.com/?page_id=164.
  • Sylantyev S, Jensen TP, Ross RA, Rusakov DA (2013) Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proc Natl Acad Sci USA 110: 5193–5198.
  • Wood ER, Dudchenko PA, Eichenbaum H (1999) The global record of memory in hippocampal neuronal activity. Nature 397: 613–616.
  • Wu CS, Chen H, Sun H, Zhu J, Jew CP, Wager-Miller J, Straiker A, Spencer C, Bradshaw H, Mackie K, Lu HC (2013) GPR55, a G-protein coupled receptor for lysophosphatidylinositol, plays a role in motor coordination. PLoS One 8: e60314.
  • Yang H, Zhou J, Lehmann C (2016) GPR55 – a putative “type 3” cannabinoid receptor in inflammation. J Basic Clin Physiol Pharmacol 27: 297–302.
  • Yi JH, Park HJ, Kim BC, Kim DH, Ryu JH (2016) Evidences of the role of the rodent hippocampus in the non-spatial recognition memory. Behav Brain Res 297: 141–149.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8562cccd-e9a0-4e89-a363-2575d14e41d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.