PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 61 | 2 |

Tytuł artykułu

Trends in edible vegetable oils analysis. Part B. Application of different analytical techniques

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This review describes recent developments in edible oils analysis by using various instrumental techniques. Different analytical methods are applied to assess oil stability but none of them is good enough. Therefore, there is still a need to develop new combined techniques to improve the quality control of edible oils. The paper describes various sample preparation techniques and instrumental methods developed to analyse different components in edible oils.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

61

Numer

2

Opis fizyczny

p.89-99,fig.,ref.

Twórcy

autor
  • Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
autor

Bibliografia

  • 1. Al-Alawi A., van de Voort F.R., Sedman J., Ghetler A., Automated FTIR analysis of free fatty acids or moisture in edible oils. J. Assoc. Lab. Automat., 2006, 11, 23–29.
  • 2. Alasalvar C., Shahidi F., Ohshima T., Wanasundara U., Yurttas H.C., Liyanapathirana C.M., Rodrigues F.B., Turkish Tombul hazelnut (Corylus avellana L.). 2. Lipid characteristics and oxidative stability. J. Agric. Food Chem., 2003, 51, 3797–3805.
  • 3. Allouche Y., Jimenez A., Gaforio J.J., Uceda M., Beltran G., How heating affects extra virgin olive oil quality indexes and chemical composition. J. Agric. Food Chem., 2007, 55, 9646–9654.
  • 4. Alonso-Salces R.M., Heberger K., Holland M.V., Moreno-Rojas J.M., Mariani C., Bellan G., Reniero F., Guillou C., Multivariate analysis of NMR fingerprint of the unsaponifiable fraction of virgin olive oils for authentication purposes. Food Chem., 2010, 118, 956–965.
  • 5. Angiuli M., Ferrari C., Lepori L., Matteoli E., Salvetti G., Tombari E., Banti A., Minnaja N., On testing quality and traceability of virgin olive oil by calorimetry. J. Therm. Anal. Calorim., 2006, 84, 105–112.
  • 6. Armenta S., Garrigues S., de la Guardia M., Determination of edible oil parameters by near infrared spectrometry. Anal. Chim. Acta, 2007, 596, 330–337.
  • 7. Arthur C., Pawliszyn J. Solid-phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem., 1990, 62, 2145–2148.
  • 8. Baeten V., Pierna J.A.F., Dardenne P., Meurens M., Garcia-Gonzalez D.L., Aparicio-Ruiz R., Detection of the presence of hazelnut oil in olive oil by FT-Raman and FT-MIR spectroscopy. J. Agric. Food Chem., 2005, 53, 6201–6206.
  • 9. Baeten V., Dardenne P., Meurens M., Aparicio R., Interpretation of Fourier transform Raman spectra of the unsaponifiable matter in a selection of edible oils. J. Agric. Food Chem., 2001, 49, 5098–5107.
  • 10. Baeten V., Hourant P., Morales M.T., Aparicio R., Oil and fat classification by FT-Raman spectroscopy. J. Agric. Food Chem., 1998, 46, 2638–2646.
  • 11. Belsito E.L., Carbone C., di Gioia M.L., Leggio A., Liguori A., Perri F., Siciliano C., Viscomi M.C., Comparison of the volatile constituents in cold-pressed bergamot oil and a volatile oil isolated by vacuum distillation. J. Agric. Food Chem., 2007, 55, 7847–7851.
  • 12. Benitez-Sanchez P.L., Leon-Camacho M., Aparicio R., A comprehensive study of hazelnut oil composition with comparisons to other vegetable oils, particularly olive oil. Eur. Food Res. Technol., 2003, 218, 13–19.
  • 13. Bester E., Butinar B., Bucar-Miklavcic M., Golob T., Chemical changes in extra virgin olive oils from Slovenian Istra after thermal treatment. Food Chem., 2008, 108, 446–454.
  • 14. Blanch G.P., Villen J., Herraiz M., Rapid analysis of free erythrodiol and uvaol in olive oils by coupled reversed phase liquid chromatography-gas chromatography. J. Agric. Food Chem., 1998, 46, 1027–1030.
  • 15. Bonoli M., Bendini A., Cerretani L., Lercker G., Toschi T.G., Qualitative and semiquantitative analysis of phenolic compounds in extra virgin olive oils as a function of the ripening degree of olive fruits by different analytical techniques. J. Agric. Food Chem., 2004, 52, 7026–7032.
  • 16. Byrdwell W.C., Neff W.E., List G.R., Triacylglycerol analysis of potential margarine base stocks by high-performance liquid chromatography with atmospheric pressure chemical ionization mass spectrometry and flame ionization detection. J. Agric. Food Chem., 2001, 49, 446–457.
  • 17. Camel V., Extraction techniques. Anal. Bioanal. Chem., 2002, 372, 39–40.
  • 18. Capote F.P., Jimenez J.R., de Castro M.D.L., Sequential (step- -by-step) detection, identification and quantitation of extra virgin olive oil adulteration by chemometric treatment of chromatographic profiles. Anal. Bioanal. Chem., 2007, 388, 1859–1865.
  • 19. Carrasco-Pancorbo A., Cerretani L., Bendini A., Segura-Carretero A., Lercker G., Fernandez-Gutierrez A., Evaluation of the influence of thermal oxidation on the phenolic composition and on the antioxidant activity of extra-virgin olive oils. J. Agric. Food Chem., 2007, 55, 4771–4780.
  • 20. Casella I.G., Contursi M., Quantitative analysis of acrolein in heated vegetable oils by liquid chromatography with pulsed electrochemical detection. J. Agric. Food Chem., 2004, 52, 5816––5821.
  • 21. Concha-Herrera V., Lerma-Garcia M.J., Herrero-Martinez J.M., Simo-Alfonso E.F., Prediction of the genetic variety of extra virgin olive oils produced at La Comunitat Valenciana, Spain, by Fourier transform infrared spectroscopy. J. Agric. Food Chem., 2009, 57, 9985–9989.
  • 22. Cortes J.M., Sanchez R., Villen J., Vazquez A., Analysis of unsaponifiable compounds of edible oils by automated on-line coupling reversed-phase liquid chromatography-gas chromatography using the through oven transfer adsorption desorption interface. J. Agric. Food Chem., 2006, 54, 6963–6968.
  • 23. Destaillats F., Cruz-Hernandez C., Fast analysis by gas-liquid chromatography. Perspective on the resolution of complex fatty acid compositions. J. Chromatogr. A, 2007, 1169, 175–178.
  • 24. Doleschall F., Kemeny Z., Recseg K., Kovari K., Monitoring of lipid degradation products by solid-phase microextraction. J. Microcolumn Sep., 2001, 13, 215–220.
  • 25. Doleschall F., Recseg K., Kemeny Z., Kovari K., Comparison of differently coated SPME fibres applied for monitoring volatile substances in vegetable oils. Eur. J. Lipid Sci. Technol., 2003, 105, 333–338.
  • 26. Ferrari C., Angiuli M., Tombari E., Righetti M.C., Matteoli E., Salvetti G., Promoting calorimetry for olive oil authentication. Thermochim. Acta, 2007, 459, 58–63.
  • 27. Giacometti J., Milosevic A., Milin C., Gas chromatographic determination of fatty acids contained in different lipid classes after their separation by solid-phase extraction. J. Chromatogr. A, 2002, 976, 47–54.
  • 28. Gliszczyńska-Świgło A., Sikorska E., Simple reversed-phase liquid chromatography method for determination of tocopherols in edible plant oils. J. Chromatogr. A, 2004, 1048, 195–198.
  • 29. Gomes T., Caponio F., Effort to improve the quantitative determination of oxidation and hydrolysis compound classes in edible vegetable oils. J. Chromatogr. A, 1999, 844, 77–86.
  • 30. Gomez-Alonso S., Salvador M.D., Fregapane G., Phenolic compounds profile of Cornicabra virgin olive oil. J. Agric. Food Chem., 2002, 50, 6812–6817.
  • 31. Guillen M.D., Cabo N., Usefulness of the frequency data of the fourier transform infrared spectra to evaluate the degree of oxidation of edible oils. J. Agric. Food Chem., 1999, 47, 709–719.
  • 32. Gurdeniz G., Ozen B., Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data. Food Chem., 2009, 116, 519–525
  • 33. Haddad R., Milagre H.M.S., Catharino R.R., Eberlin M.N., Easy ambient sonic-spray ionization mass spectrometry combined with thin-layer chromatography. Anal. Chem., 2008, 80, 2744–2750.
  • 34. Haiyan Z., Bedgood Jr. D.R., Bishop A.G., Prenzler P.D., Robards K.R., Endogenous biphenol, fatty acid and volatile profiles of selected oils. Food Chem., 2007, 100, 1544–1551.
  • 35. Hendl O., Howell J.A., Lowery J., Jones W., A rapid and simple method for determination of iodine values using derivative Fourier transform infrared measurements. Anal. Chim. Acta, 2001, 427, 75–81.
  • 36. Hidalgo F.J., Zamora R., Edible oil analysis by high-resolution nuclear magnetic resonance spectroscopy: recent advances and future perspectives. Trends Food Sci. Technol., 2003, 14, 499–506.
  • 37. Hidalgo F.J., Gomez G., Navarro J.L., Zamora R., Oil stability prediction by high-resolution 13C nuclear magnetic resonance spectroscopy. J. Agric. Food Chem., 2002, 50, 5825–5831.
  • 38. Hilali M., Charrouf Z., El Aziz Soulhi A., Hachimi L., Guillaume D., Detection of argan oil adulteration using quantitative campesterol GC-analysis. J. Am. Oil Chem. Soc., 2007, 84, 761–764.
  • 39. Janssen H-G., Boers W., Steenbergen H., Horsten R., Floter E., Comprehensive two-dimensional liquid chromatography x gas chromatography: Evaluation of the applicability for the analysis of edible oils and fats. J. Chromatogr. A, 2003, 1000, 385–400.
  • 40. Jeleń H.H., Mildner-Szkudlarz S., Jasińska I., Wąsowicz E., A headspace-SPME-MS method for monitoring rapeseed oil autoxidation. J. Am. Oil Chem. Soc., 2007. 84, 509–517.
  • 41. Jeleń H.H., Obuchowska M., Zawirska-Wojtasiak R., Wąsowicz E., Headspace solid-phase microextraction use for the characterization of volatile compounds in vegetable oils of different sensory quality. J. Agric. Food Chem., 2000, 48, 2360–2367.
  • 42. Jeleń H.H., Wlazły K., Wąsowicz E., Kamiński E., Solid-phase microextraction for the analysis of some alcohols and esters in beer: comparison with static headspace method. J. Agric. Food Chem., 1998, 46, 1469–1473.
  • 43. Johnson G.L., Machado R.M., Freidl K.G., Achenbach M.L., Clark P.J., Reidy S.K., Evaluation of Raman spectroscopy for determining cis and trans isomers in partially hydrogenated soybean oil. Organic Proc. Res. Develop., 2002, 6, 637–644.
  • 44. Kalua C.M., Bedgood D.R. Jr., Prenzler P.D., Development of a headspace solid phase microextraction-gas chromatography method for monitoring volatile compounds in extended time–course experiments of olive oil. Anal. Chim. Acta, 2006, 556, 407–414.
  • 45. Kanavouras A., Kiritsakis A., Hernandez R.J., Comparative study on volatile analysis of extra virgin olive oil by dynamic headspace and solid phase micro-extraction. Food Chem., 2005, 90, 69–79.
  • 46. Kataoka H., Lord H.L., Pawliszyn J., Applications of solid-phase microextraction in food analysis. J. Chromatogr. A, 2000, 880, 35–62.
  • 47. Kaufman M., Wiesman Z., Pomegranate oil analysis with emphasis on MALDI-TOF/MS triacylglycerol fingerprinting. J. Agric. Food Chem., 2007, 55, 10405–10413.
  • 48. Kawai Y., Takeda S., Terao J., Lipidomic analysis for lipid peroxidation – derived aldehydes using gas chromatography – mass spectrometry. Chem. Res. Toxicol., 2007, 20, 99–107
  • 49. Khallouki F., Mannica L., Viel S., Owen R.W., Thermal stability and long-chain fatty acid positional distribution on glycerol of argan oil. Food Chem., 2008, 110, 57–61.
  • 50. Kodali D.R., Oxidative stability measurement of high-stability oils by pressure differential scanning calorimeter (PDSC). J. Agric. Food Chem., 2005, 53, 7649–7653.
  • 51. Lankmayr E., Mocak J., Seret K., Balla B., Wenzl T., Bandoniene D., Gfrerer M., Wagner S., Chemometrical classification of pumpkin seed oils using UV-Vis, NIR and FTIR spectra. J. Biochem. Biophys. Methods, 2004, 61, 95–106.
  • 52. Lerma-Garcia M.J., Ramis-Ramos G., Herrero-Martinez J.M., Simon-Alfonso E.F., Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy. Food Chem., 2010, 118, 78–83.
  • 53. Liescheski P.B., Supercritical fluid extraction coupled to infrared spectroscopy for iodine number analysis of edible oils. J. Agric. Food Chem., 1996, 44, 823–828.
  • 54. Lisa M., Holcapek M., Rezanka T., Kabatova N., High-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry and gas chromatography-flame ionization detection characterization of Δ5-polyenoic fatty acids in triacylglycerols from conifer seed oils. J. Chromatogr. A, 2007, 1146, 67–77.
  • 55. Lizzani-Cuvelier L., Zarrouk M., Profiles of volatile compounds from some monovarietal Tunisian virgin olive oils. Comparison with French PDO. Food Chem., 2007, 103, 467–476.
  • 56. van Loon W.A.M., Linssen J.P.H., Legger A., Posthumus M.A., Voragen A.G.J., Identification and olfactometry of French fries flavor extracted at mouth conditions. Food Chem., 2005, 90, 417–425.
  • 57. Lopez-Lopez A., Montano A., Ruiz-Mendez M.V., Garrido-Fernandez A., Sterols, fatty acids and triterpenic alcohols in commercial table olives. J. Am. Oil Chem. Soc., 2008, 85, 253–262.
  • 58. Lorenzo I.M., Pavon J.L.P., Laespada M.E.F., Pinto C.G., Cordero B.M., Detection of adulterants in olive oil by headspace– mass spectrometry. J. Chromatogr. A, 2002a, 945, 221–230.
  • 59. Lorenzo I.M., Pavon J.L.P., Laespada M.E.F., Pinto C.G., Cordero B.M., Henriques L.R., Peres M.F., Simoes M.P., Lopes P.S., Application of headspace-mass spectrometry for differentiating sources of olive oil. Anal. Bioanal. Chem., 2002b, 374, 1205–1211.
  • 60. Mancebo-Campos V., Salvador M.D., Fregapane G., Comparative study of virgin olive oil behavior under Rancimat accelerated oxidation conditions and long-term room temperature storage. J. Agric. Food Chem., 2007, 55, 8231–8236.
  • 61. Mannina L., D’Imperio M., Capitani D., Rezzi S., Guillou C., Mavromoustakos T., Vilchez M.D.M., Fernandez A.H., Thomas F., Aparicio R., 1H NMR-based protocol for the detection of adulterations of refined olive oil with refined hazelnut oil. J. Agric. Food Chem., 2009, 57, 11550–11556.
  • 62. del Mar Caja M., del Castillo M.L.R., Alvarez R.M., Herraiz M., Blanch G.P., Analysis of volatile compounds in edible oils using simultaneous distillation-solvent extraction and direct coupling of liquid chromatography with gas chromatography. Eur. Food Res. Technol., 2000, 211, 45–51.
  • 63. Mateos R., Trujillo M., Perez-Camino M.C., Moreda W., Cert A., Relationship between oxidative stability, triacylglycerol composition and antioxidant content in olive oil matrices. J. Agric. Food Chem., 2005, 53, 5766–5771.
  • 64. Michulec M., Wardencki W., Validation of SPME-GC and HS- -GC procedures for the determination of selected solvent residues in edible oil matrices. Accred. Qual. Assur., 2007, 12, 94–104.
  • 65. Michulec M., Wardencki W., Development of headspace solid- phase microextraction-gas chromatography method for the determination of solvent residues in edible oils and pharmaceuticals. J. Chromatogr. A, 2005, 1071, 119–124.
  • 66. Michulec M., Wardencki W., Determination of solvents residues in vegetable oils and pharmaceuticals by headspace analysis and capillary gas chromatography. Chromatographia, 2004, 60, 273–277.
  • 67. Mildner-Szkudlarz S., Jeleń H.H., Zawirska-Wojtasiak R., Wąsowicz E., Application of headspace—solid phase microextraction and multivariate analysis for plant oils differentiation. Food Chem., 2003, 83, 515–522.
  • 68. Miraliakbari H., Shahidi F., Oxidative stability of tree nut oils. J. Agric. Food Chem., 2008, 56, 4751–4759.
  • 69. Moreno M.C.M.M., Olivares D.M., Lopez F.J.A., Adelantado J.V.G., Reig F.B., Determination of unsaturation grade and trans isomers generated during thermal oxidation of edible oils and fats by FTIR. J. Molec. Struc., 1999, 482–483, 551–556.
  • 70. Muik B., Lendl B., Molina-Diaz A., Valcarcel M., Ayora-Canada M.J., Two-dimensional correlation spectroscopy and multivariate curve resolution for the study of lipid oxidation in edible oils monitored by FTIR and FT-Raman spectroscopy. Anal. Chim. Acta, 2007, 593, 54–67.
  • 71. Naglic M., Smidovnik A., Use of capillary gas chromatography for determining the hydrogenation level of edible oils. J. Chromatogr. A, 1997, 767, 335–339.
  • 72. Noguera-Orti J.F., Villanueva-Camanas R.M., Raims-Ramos G., Direct injection of edible oils as microemulsions in a micellar mobile phase applied to the liquid chromatographic determination of synthetic antioxidants. Anal. Chim. Acta, 1999, 387, 127–134.
  • 73. Pacheco-Palencia L.A., Mertens-Talcott S., Talcott S.T., Chemical composition, antioxidant properties and thermal stability of a phytochemical enriched oil from acai (Euterpe oleracea Mart.). J. Agric. Food Chem., 2008, 56, 4631–4636.
  • 74. Pawliszyn J., Sample Preparation: Quo Vadis? Anal. Chem., 2003, 75, 2543 – 2558.
  • 75. Pawliszyn J., Solid Phase Microextraction: Theory and Practice. 1997, first edition, Wiley-VCH, New York, pp. 43–192.
  • 76. Pellegrini N., Visioli F., Buratti S., Brighenti F., Direct analysis of total antioxidant activity of olive oil and studies on the influence of heating. J. Agric. Food Chem., 2001, 49, 2532–2538.
  • 77. Pereira J.A., Casal S., Bento A., Oliveira M.B.P.P., Influence of olive storage period on oil quality of three Portuguese cultivars of Olea europea cobrancosa, madural and verdeal transmontana. J. Agric. Food Chem., 2002, 50, 6335–6340.
  • 78. Plutowska B., Wardencki W., Aromagrams – Aromatic profiles in the appreciation of food quality. Food Chem., 2007, 101, 845–872.
  • 79. Povolo M, Contarini G., Comparison of solid-phase microextraction and purge-and-trap methods for the analysis of the volatile fraction of butter. J. Chromatogr. A, 2003, 985, 117–125.
  • 80. Purcaro G., Morrisom P., Moret S., Conte L.S., Marriott P.J., Determination of polycyclic aromatic hydrocarbons in vegetable oils using solid-phase microextraction-comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. J. Chromatogr. A, 2007, 1161, 284–291.
  • 81. Romanik G., Gilgenast E., Przyjazny A., Kamiński M., Techniques of preparing plant material for chromatographic separation and analysis. J. Biochem. Biophys. Methods, 2007, 70, 253–261.
  • 82. Romero M.P., Tovar M.J., Girona J., Motilva M.J., Changes in the HPLC phenolic profile of virgin olive oil from young trees (Olea europaea L. cv. Arbequina) grown under different deficit irrigation strategies. J. Agric. Food Chem., 2002, 50, 5349–5354.
  • 83. Ruiz-Mendez M.V., Dobarganes M.C., Combination of chromatographic techniques for analysis of complex deodorizer distillates from an edible oil refining process. Food Chem., 2007, 103, 1502–1507.
  • 84. Santos J.C.O., Santos M.G.O., Dantas J.P., Conceicao M.M., Athaide-Filho P.F., Souza A.G., Comparative study of specific heat capacities of some vegetable oils obtained by DSC and microwave oven. J. Therm. Anal. Calorim., 2005, 79, 283–287.
  • 85. Senorans F.J., Villen J., Tabera J., Herraiz M., Simplex optimization of the direct analysis of free sterols in sunflower oil by on-line coupled reversed phase liquid chromatography-gas chromatography. J. Agric. Food Chem., 1998, 46, 1022–1026.
  • 86. Senorans F.J., Tabera J., Herraiz M., Rapid separation of free sterols in edible oils by on-line coupled reversed phase liquid chromatography-gas chromatography. J. Agric. Food Chem., 1996, 44, 3189–3192.
  • 87. Shaw A.D., di Kamillo A., Vlahov G., Jones A., Bianchi G., Rowland J., Kell D.B., Discrimination of variety and region of origin of extra virgin olive oils using 13C NMR and multivariate calibration with variable reduction. Anal. Chim. Acta, 1997, 348, 357–374.
  • 88. Simon P., Kolman L., DSC study of oxidation induction periods. J. Therm. Anal. Calorim., 2001, 64, 813–820.
  • 89. Smejkalova D., Piccolo A., High-power gradient diffusion NMR spectroscopy for the rapid assessment of extra-virgin olive oil adulteration. Food Chem., 2010, 118, 153–158.
  • 90. Smith S.A., King R.E., Min D.B., Oxidative and thermal stabilities of genetically modified high oleic sunflower oil. Food Chem., 2007, 102, 1208–1213.
  • 91. Snow N.H., Snack G.C., Head-space analysis in modern gas chromatography. Trends Anal. Chem., 2002, 21, 608 – 617.
  • 92. Stashenko E.E., Martinez J.R., Derivatization and solid-phase microextraction. Trends Anal. Chem., 2004, 23, 553–561.
  • 93. Sullivan J.C., Budge S.M., St-Onge M., Determining ethyl esters in fish oil with solid phase microextraction and GC-MS. J. Am. Oil Chem. Soc., 2009, 86, 743–748.
  • 94. Szłyk E., Szydłowska-Czerniak A., Kowalczyk-Marzec A., NIR spectroscopy and partial least-squares regression for determination of natural α-tocopherol in vegetable oils. J. Agric. Food Chem., 2005, 53, 6980–6987.
  • 95. Tan C.P., Che Man Y.B., Differential scanning calorimetric analysis for monitoring the oxidation of heated oils. Food Chem., 1999, 67, 177–184.
  • 96. Tong P., Kaługa Y., Khoo C.S., Liquid chromatographic-mass spectrometric method for detection of estrogen in commercial oils and in fruit seed oils. J. Food Comp. Anal., 2006, 19, 150–156.
  • 97. Vigli G., Philippidis A., Spyros A., Dais P., Classification of edible oils by employing 31P and 1H NMR spectroscopy in combination with multivariate statistical analysis. A proposal for the detection of seed oil adulteration in virgin olive oils. J. Agric. Food Chem., 2003, 51, 5715–5722.
  • 98. Villen J., Blanch G.P., del Castillo M.L.R., Herraiz M., Rapid and simultaneous analysis of free sterols, tocopherols and squalene in edible oils by coupled reversed-phase liquid chromatography-gas chromatography. J. Agric. Food Chem., 1998, 46, 1419–1422.
  • 99. van de Voort F.R., Sedman J., Sherazi S.T.H., Correcting for underlying absorption interferences in Fourier transform infrared trans analysis of edible oils using two-dimensional correlation techniques. J. Agric. Food Chem., 2008, 56, 1532–1537.
  • 100. Wang L., Lee F.S.C., Wang X., He Y., Feasibility study of quantifying and discriminating soybean oil adulteration in camellia oils by attenuated total reflectance MIR and fiber optic diffuse reflectance NIR. Food Chem., 2006, 95, 529–536.
  • 101. Wardencki W., Michulec M., Curyło J., A review of theoretical and practical aspects of solid-phase microextraction in food analysis. Int. J. Food Sci. Technol., 2004, 39, 703–717.
  • 102. Warner K., Effects on the flavor and oxidative stability of stripped soybean and sunflower oils with added pure tocopherols. J. Agric. Food Chem., 2005, 53, 9906–9910.
  • 103. Yang H., Irudayaraj J., Paradkar M.M., Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chem., 2005, 93, 25–32.
  • 104. Yu X., van de Voort F.R., Sedman J., Determination of peroxide value of edible oils by FTIR spectroscopy with the use of the spectral reconstitution technique. Talanta, 2007, 74, 241–246.
  • 105. Zamora R., Alba V., Hidalgo F.J., Use of high-resolution 13C nuclear magnetic resonance spectroscopy for the screening of virgin olive oils. J. Am. Oil Chem. Soc., 2001, 78, 89–94.
  • 106. Zhang X., Julien-David D., Miesch M., Raul F., Geoffroy P., Aoude-Werner D., Ennahar S., Marchioni E., Quantitative analysis of β-sitosterol oxides induced in vegetable oils by natural sunlight, artificially generated light and irradiation. J. Agric. Food Chem., 2006, 54, 5410–5415.
  • 107. Zunin P., Boggia R., Lanteri S., Leardi R., De Andreis R., Evangelisti F., Direct thermal extraction and gas chromatographic– mass spectrometric determination of volatile compounds of extra-virgin olive oils. J. Chromatogr. A, 2004, 1023, 271–276.

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-85051981-b674-414d-b409-d11d102ca1f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.