PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 18 | 1 |

Tytuł artykułu

Reversible and irreversible electroporation of cell suspensions flowing through a localized dc electric field

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Experiments on reversible and irreversible cell electroporation were carried out with an experimental setup based on a standard apparatus for horizontal electrophoresis, a syringe pump with regulated cell suspension flow velocity and a dcEF power supply. Cells in suspension flowing through an orifice in a barrier inserted into the electrophoresis apparatus were exposed to defined localized dcEFs in the range of 0–1000 V/cm for a selected duration in the range 10–1000 ms. This method permitted the determination of the viability of irreversibly electroperforated cells. It also showed that the uptake by reversibly electroperforated cells of fluorescent dyes (calcein, carboxyfluorescein, Alexa Fluor 488 Phalloidin), which otherwise do not penetrate cell membranes, was dependent upon the dcEF strength and duration in any given single electrical field exposure. The method yields reproducible results, makes it easy to load large volumes of cell suspensions with membrane non-penetrating substances, and permits the elimination of irreversibly electroporated cells of diameter greater than desired. The results concur with and elaborate on those in earlier reports on cell electroporation in commercially available electroporators. They proved once more that the observed cell perforation does not depend upon the thermal effects of the electric current upon cells. In addition, the method eliminates many of the limitations of commercial electroporators and disposable electroporation chambers. It permits the optimization of conditions in which reversible and irreversible electroporation are separated. Over 90% of reversibly electroporated cells remain viable after one short (less than 400 ms) exposure to the localized dcEF. Experiments were conducted with the AT-2 cancer prostate cell line, human skin fibroblasts and human red blood cells, but they could be run with suspensions of any cell type. It is postulated that the described method could be useful for many purposes in biotechnology and biomedicine and could help optimize conditions for in vivo use of both reversible and irreversible electroporation.

Wydawca

-

Rocznik

Tom

18

Numer

1

Opis fizyczny

p.102-119,fig.,ref.

Twórcy

autor
  • Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
autor
  • Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
autor
  • Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland

Bibliografia

  • 1. Chang, D.C., Chassy, B.M., Saunders, J.A. and Sowers, A.E. Guide to Electroporation and Electrofusion, Academic Press Inc., San Diego, 1992.
  • 2. Li, S. (Editor). Electroporation Protocols. Preclinical, and Clinical Gene Medicine, Humana Press, Totowa, New Jersey, 2008.
  • 3. Neumann, E., Schaeffer-Ridder, M., Wang, Y. and Hofschneider, P.H. Gene transfer into mouse lymphoma cells by electroporation in high electric fields. EMBO J. 1 (1982) 841-845.
  • 4. Gissel, H., Lee, R.C. and Gehl, J. Electroporation and cellular physiology. In: Clinical Aspects of Electroporation (Kee, S.T., Gehl, J. and Lee, E.W., Eds.), Springer, New York, 2011, 9-17.
  • 5. Kee, S.T., Gehl, J. and Lee, E.W. (Eds.). Clinical Aspects of Electroporation. Springer, New York, Dordrecht Heidelberg, London, 2011.
  • 6. Miller, L., Leor, J. and Rubinsky, B. Cancer cells ablation with irreversible electroporation. Technol. Cancer Res. Treat. 4 (2005) 699-705.
  • 7. Rubinsky, J., Onik, G., Mikus, P. and Rubinsky, B. Optimal parameters for the destruction of prostate cancer using irreversible electroporation. J. Urol. 180 (2008) 2668-2674.
  • 8. Rubinsky, B. (Ed.). Irreversible Electroporation, Springer-Verlag, Berlin, Heidelberg, 2010.
  • 9. Chen, N., Garner, A.L., Chen, G., Jing, Y., Deng, Y., Swanson, R.J., Kolb, J.F., Beebe, S.J., Joshi, R.P. and Schoenbach, K.H. Nanosecond electric pulses penetrate the nucleus and enhance speckle formation. Biochem. Biophys. Res. Commun. 364 (2007) 220-225.
  • 10. Raptis, L. and Firth, K.L. Electrode assemblies used for electroporation of cultured cells. Methods Mol. Biol. 423 (2008) 61-76.
  • 11. Yumura, S., Matsuzaki, R. and Kitanishi-Yumura, T. Introduction of macromolecules into living Dictyostelium cells by electroporation. Cell Struct. Funct. 20 (1995) 185-190.
  • 12. Djamgoz, M.B.A., Mycielska, M., Madeja, Z., Fraser, S.P. and Korohoda, W. Directional movement of rat prostate cancer cells in direct-current electric field: involvement of voltage-gated Na+ channel activity. J. Cell Sci. 114 (2001) 2697-2705.
  • 13. Krzysiek-Mączka, G. and Korohoda, W. Surface anisotropy orients cell divisions in contact guided cells. Folia Biol. 56 (2008) 13-19.
  • 14. Karmiol, S. Cell isolation and selection. In: Methods of Tissue Engineering. (Atala, A. and Lanza, R., Eds), Academic Press, San Diego, 2002, 19-35.
  • 15. Kemp, R.B., Meredith, R.W.J., Gamble, S. and Frost, M. A rapid cell culture technique for assessing the toxicity of detergent-based products in vitro as a possible screen for eye irritancy in vivo. Cytobios 36 (1983) 153-159.
  • 16. Szydłowska, H., Zaporowska, E., Kuszlik-Jochym, K., Korohoda, W. and Branny, J. Membranolytic activity of detergents as studied with cell viability tests. Folia Histochem. Cytochem. 16 (1978) 69-78.
  • 17. Zaporowska-Siwiak, E., Michalik, M., Kajstura, J. and Korohoda, W. Density-dependent survival of Ehrlich ascites tumor cells in the presence of various substratum for energy metabolism. J. Cell Sci. 77 (1985) 75-85.
  • 18. Abramson, H.A., Moyer, L.S. and Gorin, M.H. Electrophoresis of Proteins and the Chemistry of Cell Surface. Reinhold Publ. Corp., NY, 1942.
  • 19. Cooper, M.S. and Schliwa, M. Electrical and ionic controls of tissue cell locomotion in DC electric fields. J. Neurosci. Res. 13 (1985) 223-244.
  • 20. Ericson, C.A. and Nuccitelli, R. Embryonic fibroblasts motility and orientation can be influenced by physiological electric fields. J. Cell Biol. 98 (1984) 296-307.
  • 21. Korohoda, W. Effect of electric field on cell movement. In: Tenth School on Biophysics of Membrane Transport. School proceedings, Poland, 1990, 178-191.
  • 22. Korohoda, W. and Kurowska, A. Quantitative estimations of the thresholds of electrotactic responses in Amoeba proteus. Acta Protozool. 7 (1970) 375-382.
  • 23. Korohoda, W., Mycielska, M., Janda, E. and Madeja Z. Immediate and longterm galvanotactic responses of Ameba proteus to dc electric fields. Cell Motil. Cytoskeleton 45 (2000) 10-26.
  • 24. Nuccitelli, R. and Erickson, C.A. Embryonic cell motility can be guided by physiological electric fields. Exp. Cell. Res. 147 (1983) 195-201.
  • 25. Shafiee, H., Garcia, P.A. and Davlos, R.V. A preliminary study to delineate irreversible electroporation from thermal damage using the Arrhenius equations. J. Biomech. Eng. 131 (2009) 074509-074514.
  • 26. Seaman, G.V.F. Electrophoresis using a cylindrical chamber. In: Cell Electrophoresis (Ambrose, E.J., Ed.), J.& A Churchill LTD., London, 1965, 4-21.
  • 27. Pucihar, G., Kotnik, T., Kandušer, M. and Miklavčič, D. The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochemistry 54 (2001) 107-115.
  • 28. Ammar, D.A., Noecker, R.J. and Kahook, M.Y. Effects of benzalkonium chloride-preserved, polyquad-preserved, and sofzia-preserved topical glaucoma medications on human ocular epithelial cells. Adv. Ther. 27 (2010) 837-845.
  • 29. Schlieve, C.R., Lieven, C.J. and Levin, L.A. Biochemical activity of reactive oxygen species scavengers do not predict retinal ganglion cell survival. Invest. Ophthalmol. Vis. Sci. 47 (2006) 3878-3886.
  • 30. Craiu, A. and Scadden, D. Flow electroporation with pulsed electric fields for purging tumor cells. Methods in Molecular Biology, The Humana Press, Totowa, NJ, 2008, 301-310.
  • 31. Eppich, H.M., Foxall, R., Gaynor, K., Dombkowski, D., Miura, N. and Cheng, T. Pulsed electric fields for selection of hematopoietic cells and depletion of tumor cell contaminants. Nat. Biotechnol. 18 (2000) 882-887.
  • 32. Kotnik, T., Pucihar, G. and Miklavčič, D. The cell in the electric field. In: Clinical Aspects of Electroporation (Kee, S.T., Gehl, J. and Lee, E.W., Eds.), 2011, 19-43.
  • 33. Phez, E., Faurie, C., Golzio, M., Teissié, J. and Rols, M.P. New insight in the visualization of membrane permeabilization and DNA/membrane interaction of cells submitted to electric pulses. Biochim. Biophys. Acta – Gen. Subjects 1724 (2005) 248-254.
  • 34. Teissié, J. and Rols, M. Manipulation of cell cytoskeleton affects the lifetime of cell membrane electropermeabilization. Ann. N. Y. Acad. Sci. 720 (1994) 98-110.
  • 35. Teissié, J., Escoffre, J.M., Rols, M.P. and Golzio, M. Time dependence of electric field effects on cell membranes. A review for a critical selection of pulse duration for theapeutical application. Radiol. Oncol. 42 (2008) 196-206.
  • 36. Tsong, T.Y. Time sequence of molecular events in electroporation. In: Guide to Electroporation and Electrofusion (Chang, D.C., Chassy, B.M., Saunders, J.A., Sowers, A.E., Eds.) Academic Press, Inc., San Diego, Calif., 1992, 47-61.
  • 37. Pucihar, G., Kotnik, T., Teissié, J. and Miklavčič, D. Electropermeabilization of dense cell suspensions. Eur. Biophys. J. 36 (2008) 173-185.
  • 38. Joshi, R.P. and Schoenbach, K.H. Bioelectric effects of intense ultrashort pulses. Crit. Rev. Biomed. Eng. 38 (2010) 255-304.
  • 39. Long, G., Shires, P.K., Plescia, D., Beebe, S.J., Kolb, J.F. and Schoenbach, K.H. Targeted tissue ablation with nanosecond pulses. IEEE Trans. Biomech. Eng. 58 (2011) 2161-2167.
  • 40. Nuccitelli, R., Chen, X. and Pakhomov, G.A. A new pulsed electric field therapy for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence. Int. J. Cancer 125 (2009) 438-445.
  • 41. Ziv, R., Steinhardt, Y., Pelled, G., Gazit, D. and Rubinsky, B. Microelectroporation of mesenchymal stem cells with alternating electrical current pulses. Biomed. Microdevices 11 (2009) 95-101.
  • 42. Davalos, R.V. and Rubinsky, B. Temperature considerations during irreversible electroporation. Int. J. Heat Mass Transf. 51 (2008) 5617-5622.
  • 43. Fox, M.B., Esveld, D.C., Valero, A., Luttge, R., Mastwijk, H.C., Bartels, P.V., van der Berg, A. and Boom, R.M. Electroporation of cells in microfluidic devices: a review. Anal. Bioanal. Chem. 385 (2006) 474-485.
  • 44. Fabczak, S., Korohoda, W. and Walczak, T. Studies on the electrical stimulation of contraction in Spirostomum. I. Conditions of the quantitative measurements. Cytobiologie, Eur. J. Cell Biol. 7 (1973) 152-163.
  • 45. Hui, S.W. Overview of drugs delivery and alternative methods to electroporation. In: Electroporation Protocols. Preclinical, and Clinical Gene Medicine. (Li, S., Ed.), Humana Press, Totowa, New Jersey, 2008, 91-107.
  • 46. Sixou, S. and Teissié, J. Specific electropermeabilization of leukocytes in a blood sample and application to large volumes of cells. Biochim. Biophys. Acta 1028 (1990) 154-160.
  • 47. Teissié, J. and Rols, M. An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys. J. 65 (1993) 409-413.
  • 48. Towhidi, L., Kotnik, T., Pucihar, G., Firoozabadi, S.M.P., Mozdarani, H. and Miklavcic, D. Variability of the minimal transmembrane voltage resulting in detectable membrane electroporation. Electromagn. Biol. Med. 27 (2008) 372-385.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-84369c23-a0d4-4536-9c69-c9530c82fe66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.