PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 6 |

Tytuł artykułu

Bioconversion of Egypt's agricultural wastes into biogas and compost

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study focuses on the bioconversion of agricultural wastes (AWs) in rural Egypt. We analyzed data derived from literature to implement a future image suiting Egypt's situation. Despite the limited information in the field of management of agricultural wastes in Egypt and the gap between formal and practical data, the studies consistently showed that bioconversion is suitable to sustainably treat the unused part of AWs, which is about 52% of a total of 46.7×10⁶ tons year⁻¹. Bioconversion can convert those AWs into about 12.6×10⁹ m³ year⁻¹ of biogas with about 60% methane, which is equal to 7.6×10⁹ m³ of natural gas (NG), and/or ≈ 10×10⁶ tons year⁻¹ of compost. The produced biogas from anaerobic digestion (AD) can contribute to about 13% of the Egypt’s total NG production; meanwhile, compost will increase the total production of fertilizers in Egypt at more than 60%. This suggests that decision makers, researchers, and engineers should draw more attention to bioconversion as an efficient management tool for resolving the growing problem of agricultural wastes in rural areas.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

6

Opis fizyczny

p.2445-2453,fig.,ref.

Twórcy

autor
  • Department of Ecology and Environmental Sciences, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
autor
  • Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave., P.O. Box 832 El-Shatby, Alexandria, Egypt
autor
  • Department of Ecology and Environmental Sciences, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
  • Institute of Vertebrate Biology, AS CR, Kvetna 8, 603 65 Brno, Czech Republic

Bibliografia

  • 1. El-MASHAD H.M., LOON W.K., ZEEMAN G. Reuse potential of agricultural wastes in semi-arid regions: Egypt as a case study. Reviews in Environmental Science and Bio/Technology. 2 (1), 53, 2003.
  • 2. HAMDY Y.A. The current situation of Egyptian agricultural wastes. In: The Proceedings of Anaerobic Treatment of Solid Wastes Workshop, 1998, Mansoura University, Egypt, [in Arabic].
  • 3. NAKHLA D.A., HASSAN M.G., EL-HAGGAR S. Impact of biomass in Egypt on climate change. Natural Science. 5 (6), 678, 2013.
  • 4. RZEŹNIK W., MIELCAREK P. Review Greenhouse Gases and Ammonia Emission Factors from Livestock Buildings for Pigs and Dairy Cows. Pol. J. Environ. Stud. 25 (5), 1813, 2016.
  • 5. ABOU HUSSEIN S.D., SAWAN O.M. The utilization of agricultural waste as one of the environmental issues in Egypt (A case Study). Journal of Applied Sciences Research. 6 (8), 1116, 2010.
  • 6. FERNANDÉZ J., PERÉZ M., ROMERO L.I. Kinetics of mesophilic anaerobic digestion of the organic fraction of municipal solid waste: influence of initial total solid concentration. Bioresour Technol. 101 (16), 6322, 2010.
  • 7. ZAREMANESH H., NASIRI B., AMIRI A. The effect of vermicompost biological fertilizer on corn yield. J. Mater. Environ. Sci. 8 (1), 154, 2017.
  • 8. KRUSEMAN G., VULLINGS W. Rural Development Policy in Egypt towards 2025. Alterra-rapport, 2007, ISSN 1566–7197.
  • 9. World Meteorological Organization. Weather Information for Cairo, 2014. http://worldweather.wmo.int/en/city.html?cityId=248
  • 10. SAID N., EL-SHATOURY S., DIAZ D L F., ZAMORANO M. Quantitative appraisal of biomass resources and their energy potential in Egypt. Renewable and Sustainable Energy Reviews. 24, 84, 2013.
  • 11. EL-MESSERY M.A., ISMAIL G.A., ARAFA A.K. Evaluation of municipal solid waste management in Egyptian rural areas. Egypt Public Health Assoc. 84 (1-2), 51, 2009.
  • 12. ZAKI T., KAFAFI A., MINA M.B., ABD EL-HALIM A.M., SABER M. Solid Waste Management in Egypt, annual report of New center for Integrated studies of Land & Environment (NILE), Published by: Ministry of State for Environmental Affairs, 2013.
  • 13. EL-HAGGAR S.M, MOUNIR G, GENNARO L. Agricultural waste as an energy source in developing countries, a case study in Egypt on the utilization of agricultural waste through complexes. International Centre for Science and High Technology (ICS),United Nations Industrial Development organization (UNODO), 1, 2004.
  • 14. DE BERE L. Anaerobic digestion of solid waste: state-of-the-art. Water Science and Technology. 41 (3), 283, 2000.
  • 15. EL-MASHAD H.M. Solar Thermophilic Anaerobic Reactor (STAR) for Renewable Energy Production. Thesis Wageningen University, the Netherlands- with summary in Dutch, 2003, ISBN: 90-5808-953-3.
  • 16. BOONTIAN N. Conditions of the Anaerobic Digestion of Biomass, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering. 8 (9), 1036, 2014.
  • 17. KUMAR R., WYMAN C.E.Does change in accessibility with conversion depend on both the substrate and pretreatment technology? Bioresour Technol. 100 (18), 4193, 2009.
  • 18. MAURYA D.P., SINGLA A., NEGI S. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. Biotech. Biotech. 5 (5), 597, 2015.
  • 19. EIA, US Energy Information Administration: Egypt International energy data and analysis, 2015. https://www.eia.gov/beta/international/analysis.cfm?iso=EGY
  • 20. THE WORLD FACTBOOK, CIA: Energy Egypt, 2015. https://www.cia.gov/library/publications/the-world-factbook/geos/eg.html
  • 21. Report no. “42”. The fertilizer crisis in Egypt (the problem and the solution), Land Center for Human Rights LCHR, 2007. http://www.lchr-eg.org/archive/105/105-43.htm
  • 22. MERLIN G., BOILEAU H. Anaerobic Digestion of Agricultural Waste: State of the Art and Future Trends. In: TORALES A. (edt) Anaerobic Digestion: Types, Processes and Environmental Impact, Series: Environmental Science, Engineering and Technology Waste and Wastewater Management, Publisher: Nova Science Publishers, Inc NY USA, 2013.
  • 23. THEMELIS N.J., ULLOA P.A. Methane generation in landfills. Renew Energy. 32, 1243, 2007.
  • 24. CHANDRA R., TAKEUCHI H., HASEGAWA T. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews. 16, 1462, 2012.
  • 25. KHAIRUDDIN N., ABD MANAF L., ALI HASSAN M., HALIMOON N. A.B., KARIM GHANI W.A.W. High Solid Anaerobic Co-Digestion of Household Organic Waste with Cow Manure for Mass and Energy Recovery. Pol. J. Environ. Stud. 25 (4), 1549, 2016.
  • 26. FOUNTOULAKIS M.S., DRAKOPOULOU S., TERZAKIS S., GEORGAKI E., MANIOS T. Potential for methane production from typical Mediterranean agro-industrial by-products. Biomass Bioenergy. 32, 155, 2008.
  • 27. NOORI M., SAADY C., MASSÉ D.I. Impact of Organic Loading Rate on Psychrophilic Anaerobic Digestion of Solid Dairy Manure. Energies. 8, 1990, 2015.
  • 28. KHALID A., ARSHAD M., ANJUM M., MAHMOOD T., DAWSON L. The Anaerobic Digestion of Solid Organic Waste. Waste Management. 31, 1737, 2011.
  • 29. HARTMANN H., AHRING B.K. Anaerobic digestion of the organic fraction of municipal solid waste: Influence of co-digestion with manure. Water Research. 39 (8), 1543, 2005.
  • 30. PATIL V.S., DESHMUKH H.V. Co-Digestion of Vegetable waste with Organic wastes for Energy Generation. A review; Int. Res. J. Biological Sci. 4 (6), 83, 2015.
  • 31. ALQARALLEH R.M., KENNEDY K., DELATOLLA R., SARTAJ M. Thermophilic and hyper-thermophilic co-digestion of waste activated sludge and fat, oil and grease. Evaluating and modeling methane production. Journal of Environmental Management. 183, 551, 2016.
  • 32. MUMME J., LINKE B., TÖLLE R. Novel upflow anaerobic solid-state (UASS) reactor. Bioresour. Technol. 101, 592, 2010.
  • 33. CHARLES W., WALKER L., CORD-RUWISCH R. Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste. Bioresource Technology. 100 (8), 2329, 2009.
  • 34. LASTELLA G., TESTA C., CORNACHIA G., NOTORNICOLA M., VOLTASIO F., SHARMA V.K. Anaerobic digestion of semi-solid organic waste: biogas production and its purification. Energy Conservation and Management. 43 (1), 63, 2002.
  • 35. FABIEN M. An introduction to anaerobic digestion of organic wastes. Final report, Remade Scotland, 2003. http://www.remade.org.uk
  • 36. KARAGIANNIDIS A., PERKOULIDIS G. A multi-criteria ranking of different technologies for the anaerobic digestion for energy recovery of the organic fraction of municipal solid wastes. Bioresour. Technol. 100, 2355, 2009.
  • 37. WARD A.J., HOBBS P.J., PETER H.J., DAVID J.L. Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology. 99,7928, 2008
  • 38. FEZZANI B., CHEIKH R.B. Two-phase anaerobic co-digestion of olive mill wastes in semi-continuous digesters at mesophilic temperature. Bioresour. Technol. 101, 1628, 2010.
  • 39. DEMIRER G.N., CHEN S. Two-phase anaerobic digestion of unscreened dairy manure. Process Biochem. 40, 3542, 2005.
  • 40. WEILAND P. State of the art of solid-state digestion-recent developments. In: Rohstoffe, F.N. (edt), Solid-State Digestion-State of the Art and Further R&D Requirements. Volume 24, Gulzower Fachgespräche, pp. 22– 38, 2006.
  • 41. KARTHIKEYAN O.P., VISVANATHAN C. Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion process: a review; Rev Environ Sci Biotechnol. 12 (3), 257, 2013.
  • 42. SURROOP D., MOHEE R. Comparative assessment of anaerobic digestion of municipal solid waste at mesophilic and thermophilic temperatures. Int J Environ Technol Manag. 14 (1/2/3/4), 238, 2011.
  • 43. DEUBLEIN D., STEINHAUSER A. Biogas from Waste and Renewable Resources. An Introduction. Wiley-VCH Verlag GmbH & Co. KGaA, 2008, ISBN: 9783527621705, DOI: 10.1002/9783527621705.
  • 44. RÜCKER C., KÜMMERER K. Environmental Chemistry of Organosiloxanes. Chemical Reviews. 115 (1), 466, 2015.
  • 45. HE P.J. Anaerobic digestion: an intriguing long history in China. Waste Management. 30 (4), 549, 2010.
  • 46. RAJENDRAN K., ASLANZADEH S., TAHERZADEH M.J. Household Biogas Digesters. Energies. 5 (8), 2911, 2012.
  • 47. TAMBONE F., SCAGLIA B., D`lMPORZANO G., SCHIEVANO A., ORZI V., SALATI S., ADANI F. Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere. 81 (5), 577, 2010.
  • 48. HUGH M. Agricultural Composting Basics. Organic Crops Production Program Lead/OMAFRA, 2015. http://www.omafra.gov.on.ca/english/engineer/facts/05–023.htm
  • 49. SINGH S., NAIN L. Microorganisms in the Conversion of Agricultural Wastes to Compost. Proc Indian Natn Sci Acad. 80 (2), 473, 2014.
  • 50. SHAMMAS N.K., WANG L.K. Aerobic Digestion. In: Biosolids Treatment Processes, Handbook of Environmental Engineering, 6, 177, 2007.
  • 51. MICHALAK I., TUHY L., CHOJNACKA K. Co-composting of Algae and Effect of the Compost on Germination and Growth of Lepidium sativum. Pol. J. Environ. Stud. 25 (3), 1107, 2016.
  • 52. ESCOBAR N., SOLARTE V. Microbial Diversity Associated with Organic Fertilizer Obtained by Composting of Agricultural Waste. International Journal of Bioscience. Biochemistry and Bioinformatics. 5 (2), 70, 2015.
  • 53. SADIK M.W., EL SHAER H.M., YAKOT H. M. Recycling of Agriculture and Animal Farm Wastes into Compost Using Compost Activator in Saudi Arabia. J. Int. Environmental Application & Science. 5 (3), 397, 2010.
  • 54. ITALIAN AGENCY FOR DEVELOPMENT COOPERATION (Lebanon and Syria). Composting from A to Z, 2011. http://aicsbeirut.org/portal/en-US/publications/14/c/composting-from-a-to-z/374/
  • 55. KÜLCÜ R., YALDIZ O. The composting of agricultural wastes and the new parameter for the assessment of the process. Ecological Engineering. 69, 220, 2014.
  • 56. HESS J.B., DONALD J.O., MITCHELL C.C., GILLIAM C.H. Composting Agricultural Wastes in Alabama. Alabama Cooperative Extension System (Alabama A&M University and Auburn University), 2011, ANR-0572.
  • 57. ZENG A., KALTSCHMITT M. Green Electricity and biowaste via biogas to bulk-chemicals and fuels: the next move toward a sustainable bioeconmy. Eng. Life Sci. 16 (3), 211, 2016.
  • 58. SAMBO A.S., ETONIHU A.C., MOHAMMED A.M. Biogas Production from Co-digestion of Selected Agricultural Wastes in Nigeria. International Journal of Research – Granthaalayah. 3 (11), 7, 2015.
  • 59. WEILAND P. Biogas production: current state and perspectives. Appl Microbiol Biotechnol. 85, 849, 2010.
  • 60. MUSSOLINE W., ESPOSITO G., GIORDANO A., LENS P. The Anaerobic Digestion of Rice Straw. Critical Reviews in Environmental Science and Technology. 43, 895, 2013
  • 61. CALLAGHAN F.J., WASE D.A.J., THAYANITY K., FORSTER C.F. Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass Bioenergy. 22, 71, 2002.
  • 62. ESPOSITO G., FRUNZO L., LIOTTA F., PANICO A., PIROZZI F. BMP tests to measure the biogas production from the digestion and co-digestion of Complex organic substrates. Open J Environ Eng. 5, 1, 2012.
  • 63. SØNDERGAARD M.M., FOTIDIS I.A., KOVALOVSZKI A., ANGELIDAKI I. Anaerobic Co-digestion of Agricultural Byproducts with Manure for Enhanced Biogas Production. Energy Fuels. 29 (12), 8088, 2015.
  • 64. PAGÉS-DÍAZ J., PEREDA-REYES I., TAHERZADEH M.J., SÁRVÁRI-HORVÁTH I., LUNDIN M. Anaerobic co-digestion of solid slaughterhouse wastes with agro-residues: Synergistic and antagonistic interactions determined in batch digestion assays, Chemical Engineering Journal. 245, 89, 2014.
  • 65. BRAUN R., WELLINGER A. Potential of Co-digestion. IEA Bioenergy, Task 37, 2001. https://www.iea-biogas.net/files/daten-redaktion/download/publi-task37/Potential%20of%20Codigestion%20short%20Brosch221203.pdf
  • 66. BUDZIANOWSKI W. Potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment. Renewable and Sustainable Energy Reviews. 54, 1148, 2016.
  • 67. HEO N.H., PARK S.C., KANG H. Effects of mixture ratio and hydraulic retention time on single-stage anaerobic co-digestion of food waste and waste activated sludge. J Environ Sci Health A Tox Hazard Subst Environ Eng. 39 (7), 2004.
  • 68. ZHANG R., EL-MASHAD H.M., HARTMAN K., WANG F., LIU G., CHOATE C. Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technology. 98 (4), 929, 2007.
  • 69. CHEN X., ROMANO R.T., ZHANG R. Anaerobic digestion of food wastes for biogas production. Int J Agric & Bio Eng. 3 (4), 61, 2010.
  • 70. ALAA EL-DIN M.N., GOMAA H.A., EL-SHIMI S.A., ALI B.E. Biogas Production from Kitchen Refuses of Army Camps of Egypt using a two Stage Biogas Digester. In: El-Halwagy M.M. (ed.), Biogas Technology, Transfer and Diffusion, Elsevier Applied Science Publishers Ltd, 589, 1986.
  • 71. COSTA M.S.S. DE M., CARNEIRO L.J., COSTA L.A. DE M., PEREIRA D.C., LORIN H.E.F. Composting Time reduction of Agro-industrial Wastes. Journal of the Brazilian Association of Agricultural Engineering. 36 (6), 1206, 2016.
  • 72. AL-BARAKAH F.N., RADWAN S.M.A., ABDEL-AZIZ R.A. Using Biotechnology in Recycling Agricultural Waste for Sustainable Agriculture and Environmental Protection. Int. J. Curr. Microbiol.App.Sci. 2 (12), 446, 2013.
  • 73. SEAM (Solid Waste Management). Case study: 150 tpd compost plant, Mansoura, Egypt, 1999. http://www.eeaa.gov.eg/seam/CaseStudies/SW_Compost.PDF
  • 74. LUSKE B. Reduced GHG emissions due to compost production and compost use in Egypt. Report of Louis Bolk Institute, the Netherlands, 2010. http://orgprints.org/17480/4/17480.pdf

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8368e30c-5f21-492d-98ed-3669040c67f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.