PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 03 |

Tytuł artykułu

Empiric, structural and in silico findings give birth to plausible explanations for the multifunctionality of the wheat dehydrin (DHN-5)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The wheat dehydrin DHN-5 represents one of the members of the LEA (Late Embryogenesis Abundant) group 2 family. It has been previously shown to play a fundamental role in plant response and adaptation to abiotic stresses. It has also exhibited heat-protecting effect on enzymatic activities. In the present work, we report a number of findings resulting from experimentation and prediction to understand the molecular mechanism underlying the multifunction that may be attributed or directed by the DHN-5 protein. Our analysis showed that DHN-5 was not fixed on the chromatographic affinity resin (Concanavalin A) and did not react with periodic acid used for the staining of glycosylated proteins. These facts reinforced with prediction tools proved that DHN-5 is not glycosylated. In another hand, DHN-5 showed a shift on SDSPAGE electrophoretic mobility. Eventually, the proposed 3D model of the DHN-5 reinforces their disordered structure. Fold Index and Gold Plot enhance the fact that DHN-5 is an unfolded protein. On the other hand, DHN-5 possesses the ability to chelate ions, like Na+ (86 %), K+ (64 %), Mg2+ (74 %), Cu2+ (77 %), Co2+ (86 %) and Fe2+ (90 %) and could explain the tolerance of transgenic forms of Arabidopsis thaliana plants, containing the DHN-5 gene, against salinity.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

03

Opis fizyczny

Article: 52 [8 p.], fig.,ref.

Twórcy

autor
  • Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Street Sidi Mansour, 3018 Sfax, Tunisia
autor
  • Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Street Sidi Mansour, 3018 Sfax, Tunisia
autor
  • Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Street Sidi Mansour, 3018 Sfax, Tunisia
autor
  • Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Street Sidi Mansour, 3018 Sfax, Tunisia
autor
  • Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Street Sidi Mansour, 3018 Sfax, Tunisia

Bibliografia

  • Altschul SF, Gish W, Miller EW, Myers DJ (1990) Lipman, Basic local alignment search tool. J Mol Biol 215:403–410
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254
  • Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pagés M, Masmoudi K (2007a) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026
  • Brini F, Hanin M, Lumbreras V, Irar S, Pages M, Masmoudi K (2007b) Functional Characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance. Plant Sci 172:20–28
  • Brini F, Saibi W, Amara I, Gargouri, Masmoudi K, Hanin M (2010) Wheat dehydrin DHN-5 exerts a heat-protective effect on bglucosidase and glucose oxidase activities. Biosci Biotechnol Biochem 74:1050–1054
  • Drira M, Saibi W, Brini F, Gargouri A, Masmoudi K, Hanin M (2013) The K-segments of the wheat dehydrin DHN-5 are essential for the protection of lactate dehydrogenase and b-glucosidase activities in vitro. Mol Biotechnol 54:643–650
  • Drira M, Saibi W, Amara I, Masmoudi K, Hanin M, Brini F (2015) Wheat dehydrin K-segments ensure bacterial stress tolerance, antiaggregation and antimicrobial effects. Appl Biochem Biotech. doi:10.1007/s12010-015-1502-9
  • Dure L (1993) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3:363–369
  • Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman I, Sussman JL (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21:3435–3438
  • Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K (2011) Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signal Behav 10:1503–1509
  • Higgins GG, Sharp PM (1989) Fast and sensitive multiple sequence alignments on micro-computer. CABIOS 5:151–153
  • Idicula-Thomas S, Balaji PV (2005) Understanding the relationship between the primary structure of proteins and its propensity to be soluble on overexpression in Escherichia coli. Protein Sci 14:582–592
  • Irar S, Brini F, Goday A, Masmoudi K, Pagés M (2010) Proteomic analysis of wheat embryos with 2-DE and liquid-phase chromatography (ProteomeLab PF-2D)—A wider perspective of the proteome. J Proteomics 731:707–1721
  • Jensen A, Goday M, Figueras A, Jessop M (1998) Pagés, Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. Plant J 13:691–697
  • Jere PS, Itzhak K, Richard LJ, Vincent TM (1973) Major glycoprotein of the human erythrocyte membrane: evidence for an amphipathic molecular structure. Arch Biochem Biophys 155:167–183
  • Jin X, Zhang YX, Wei W, Lu H, Guan ZQ, Wang Z, Chai TY (2008) BjDHNs confer heavy-metal tolerance in plants. Mol Biotechnol 38:91–98
  • Laemmli UK, Favre M (1973) Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol 80:575–592
  • Martin J, Geromanos S, Tempst P, Hartl FU (1993) Identification of nucleotide binding regions in the chaperonin proteins GroEl and GroEs. Nature 366:279–282
  • Masakazu H, Mitsuru K, Takanari K (2013) A KS-type dehydrin and its related domains reduce Cu-promoted radical generation and the residues contribute to the radical-reducing activities. J Exp Bot 64:1615–1624
  • Mouillon JM, Gustafsson P, Harryson P (2006) Structural investigation of disordered stress proteins. Comparison of full-length dehydrins with isolated peptides of their conserved segments. Plant Physiol 141:638–650
  • Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK (2007) Intrinsic disorder and functional proteomics. Biophys J 92:1439–1456
  • Saibi W, Gargouri A (2011) Purification and biochemical characterization of an atypical b-glucosidase from Stachybotrys microspora. J Mol Catal B Enzym 72:107–115
  • Sang TJ, Tae HK, William K, George G (2011) Bypassing glycosylation: engineering aglycosylated full-length IgG antibodies for human therapy. Curr Opin Biotechnol 22:858–867
  • Ting L, Bonkovsky H, Guo JT (2011) Structural analysis of heme proteins: implications for design and prediction. BMC Struct Biol 11:1–13
  • Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochimica et Biophysica Acta (BBA) Proteins Proteomics 1804:1231–1264

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-831ee752-9f64-485d-b40c-62b10e113352
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.