PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 2 |

Tytuł artykułu

Optimizing three kinds of coagulants using Plackett-Burman and response surfacemethodology for phosphorus removal from domestic sewage

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study compounds three types of coagulants (AlCl₃, FeCl₃, Fe₂(SO₄)₃) with promising effects on TP removal of domestic sewage. The optimum conditions for TP removal using¹ compounded coagulants are determined by Plackett-Burman (P-B) design, steepest ascent, and Box-Behnken design. The adequacy of the quadratic regression model is evaluated by analysis of variance (ANOVA). Results show that initial pH, AlCl₃, and Fe₂(SO₄)₃ are the significant factors for TP removal. F-test, P-value (Prob>F), coefficients R², coefficient of variation, and adequate precision analysis demonstrated the goodness of fit for the regression model. The optimized conditions for TP removal determined by the response surface methodology are initial pH 5.2, AlCl₃ 45 mg/L, and Fe₂(SO₄)₃ 51 mg/L, respectively. The experimental TP removal efficiency (82.89%) agrees with the predicted response value (81.99%), thereby validating the feasibility of the model. Compared to single coagulants (AlCl₃, FeCl₃, Fe₂(SO₄)₃), the compounded coagulants demonstrate 3.29%, 7.59%, and 15.19% higher for TP removal; and 10.1%, 3.0%, and 10.3% higher for CODCr removal. In addition, the compounded coagulants also alleviate the potential hazards to human health due to the dosage decrease of aluminium salt coagulants.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

2

Opis fizyczny

p.877-885,fig.,ref.

Twórcy

autor
  • Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
  • Mianyang Normal University, Mianyang, China
autor
  • University of Chinese Academy of Sciences, Beijing, China
autor
  • Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
  • Mianyang Normal University, Mianyang, China
autor
  • Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
  • Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
autor
  • Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
  • Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
autor
  • Mianyang Normal University, Mianyang, China

Bibliografia

  • 1. FARROKHI M., HAJRASOLIHA M., MEEMARI G., FAHIMINIA M., TALEBI M., KOHANSAL M. The creation of management systems for funding priorities in wastewater project in rural communities in the Islamic Republic of Iran, Water Sci Technol, 58, 1181, 2008.
  • 2. PARUCH A.M., MAEHLUM T., OBARSKA-PEMPKOWIAK H., GAJEWSKA M., WOJCIECHOWSKA E., OSTOJSKI. A. Rural domestic wastewater treatment in Norway and Poland: experiences, cooperation and concepts on the improvement of constructed wetland technology, Water Sci Technol, 63, 776, 2011.
  • 3. GAO J.Q., CHEN S.H., WANG W.L., YAN Q.S., JIANG N., ZHANG. R.Q. Effects of Unpowered Complex Eco-Technology on Sewage Purification in Central Chinese Rural Areas, Pol J Environ Stud, 21, 1595, 2012.
  • 4. WU Y., AN S.L. Present and prospects of methods of phosphorus removal from wastewater. Journal of Tianjin Polytechnic University, 20, 74, 2001 [In Chinese].
  • 5. MOUSSAS P.A., ZOUBOULIS. A.I. A new inorganic-organic composite coagulant, consisting of Polyferric Sulphate (PFS) and Polyacrylamide (PAA). Water Res, 43, 3511, 2009.
  • 6. WEI Y.X., DING A.M., DONG L., TANG Y.Q., YU F.L., DONG X.Z. Characterisation and coagulation performance of an inorganic coagulant-poly-magnesium-silicate-chloride in treatment of simulated dyeing wastewater. Colloid Surface A, 470, 137, 2015.
  • 7. CARAVELLI A.H., DE GREGORIO C., ZARITZKY N.E. Effect of operating conditions on the chemical phosphorus removal using ferric chloride by evaluating orthophosphate precipitation and sedimentation of formed precipitates n batch and continuous systems. Chem Eng J, 209, 469, 2012.
  • 8. SZABO I., TAKACS MURTHY S., DAIGGER G.T., LICSKO I., SMITH. S. Significance of design and operational variables in chemical phosphorus removal. Water Environment Research, 80, 407-416, 2008.
  • 9. VANAJA. K., SHOBHA RANI R.H. Design of Experiments: Concept and Applications of Plackett Burman Design. Clinical Research and Regulatory Affairs, 24, 1, 2008.
  • 10. ROSA J.L., ROBIN A., NAKAZATO R.Z., RIBEIRO M.B., PIASSA M.P., SILVA M.B. Formation of titania nanotube arrays by anodisation: DOE approach. Surf Eng, 30, 115, 2014.
  • 11. KIRAN B., KAUSHIK A., KAUSHIK C.P. Response surface methodological approach for optimizing removal of Cr(VI) from aqueous solution using immobilized cyanobacterium. Chem Eng J, 126, 147, 2007.
  • 12. REDDY L.V.A., WEE Y.J., YUN J.S., RYU H.W. Optimization of alkaline protease production by batch culture of Bacillus sp RKY3 through Plackett-Burman and response surface methodological approaches. Bioresource Technol, 99, 2242, 2008.
  • 13. GHAFARI S., AZIZ H.A., ISA M.H., ZINATIZADEH A.A.. Application of response surface methodology (RSM) to optimize, coagulation-flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. J Hazard Mater, 163, 650, 2009.
  • 14. BASKAN M.B., PALA A.A. statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate. Desalination, 254, 42, 2010.
  • 15. L.J., W.J.L., FENG. C.M. Analysis on PFS a Coagulant for Phosphorus Removal, Water & Wastewater 32, 2006 [In Chinese].
  • 16. NEPA C. Water and Wastewater Monitoring Methods. fourth ed., Chinese Environmental Science Publishing Press, Beijing. 2002 [In Chinese].
  • 17. ZAINAL-ABIDEEN M., ARIS A., YUSOF F., ABDUL-MAJID Z., SELAMAT A., OMAR S.I. Optimizing the coagulation process in a drinking water treatment plant - comparison between traditional and statistical experimental design jar tests. Water Sci Technol 65, 496-, 2012.
  • 18. CAO X.Z., LOU H.Q., WEI W., ZHU L.J., Treatment of tetrahydrofuran wastewater by the Fenton process: response surface methodology as an optimization tool. Water Sci Technol 69, 1080-, 2014.
  • 19. XIAO G., ZHANG X., SU H.J., TAN T.W. Plate column biosorption of Cu(II) on membrane-type biosorbent (MBS) of Penicillium biomass: Optimization using statistical design methods. Bioresource Technol 143, 490, 2013.
  • 20. XING W., HUANG W.M., LI D.H., LIU Y.D. Research progress of coagulant ferric salt and iron salt mixing mechanism of phosphorus removal technology. Water & Wastewater, 32, 88, 2006 [In Chinese].
  • 21. GONG Y.Z., XU J.Y. Experimental study on phosphorus removal from aluminum salt. Shanxi Architecture, 35, 181, 2009 [In Chinese].
  • 22. XIE J., CHENG. Y.J., BI Z., WANG D.S., DUAN J.M. Coagulation of a low temperature and turbidity raw source water by Fe-Al composite coagulants. Journal of Environmental Engineering and Science, 8, 3546, 2014 [In Chinese].
  • 23. TOLKOU A.K., ZOUBOULIS A.I., Synthesis and coagulation performance of composite poly-aluminum-ferric-silicate-chloride coagulants in water and wastewater. Desalin Water Treat, 53, 3309, 2015.
  • 24. DING D.C., ZHOU H.J., WANG Q.Y. Comparative Study on the Phosphorus Removal Effect of Two Frequently-used Inorganic Coagulating Agent. Guangdong Chemical Industry, 39, 270, 2009 [In Chinese].
  • 25. BONDY S.C., Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer‘s disease and age-related neurodegeneration. Neurotoxicology, 52, 222, 2016.
  • 26. KAWAHARA M., KATO-NEGISHI M. Link between Aluminum and the Pathogenesis of Alzheimer‘s Disease: The Integration of the Aluminum and Amyloid Cascade Hypotheses. International Journal of Alzheimer‘s Disease, 2011, 1, 2011.
  • 27. WALTON J.R. Chronic Aluminum Intake Causes Alzheimer‘s Disease: Applying Sir Austin Bradford Hill‘s Causality Criteria. J Alzheimers Dis, 40, 765, 2014.
  • 28. BERTHON G. Aluminium speciation in relation to aluminium bioavailability, metabolism and toxicity. Coordination Chemistry Reviews, 228, 319, 2002.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-821848b6-c590-4d1c-9067-4292d8999dc2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.