PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 12 |

Tytuł artykułu

Exogenously applied 20-hydroxyecdysone increases the net photosynthetic rate but does not affect the photosynthetic electron transport or the content of photosynthetic pigments in Tetragonia tetragonioides L.

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Phytoecdysteroids are steroid compounds present in many plant species (sometimes in rather large amounts), but their biological role is still far from being clear. We have found that the exogenous application of 20-hydroxyecdysone (20E) to leaves of Tetragonia tetragonioides L. causes stimulation of its net photosynthetic rate (P N) but does not positively affect the photosynthetic electron transport or the content of photosynthetic pigments. The increase in P N was observed shortly after 20E treatment and was statistically significant during the 4th and 6th hours after treatment but not later, which could be perhaps caused by a strictly short-term window of opportunity for ecdysteroids to significantly affect photosynthetic processes. To our knowledge, these results are the first to suggest a new potential biological function of phytoecdysteroids—regulation of photosynthesis.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

12

Opis fizyczny

p.3489-3495,fig.,ref.

Twórcy

autor
  • Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicˇna´ 5, 12844 Prague 2, Czech Republic
autor
  • Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicˇna´ 5, 12844 Prague 2, Czech Republic
autor
  • Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicˇna´ 5, 12844 Prague 2, Czech Republic
autor
  • Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicˇna´ 5, 12844 Prague 2, Czech Republic
autor
  • Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology,Institute of Chemical Technology Prague, Technicka´ 5, 16628 Prague 6, Czech Republic
autor
  • Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology Institute of Chemical Technology Prague, Technicka´ 5, 16628 Prague 6, Czech Republic

Bibliografia

  • Bajguz A, Koronka A (2001) Effect of ecdysone application on the growth and biochemical changes in Chlorella vulgaris cells. Plant Physiol Biochem 39:707–715. doi: 10.1016/S0981-9428(01)01287-6
  • Bakrim A, Lamhamdi M, Sayah F, Chibi F (2007) Effect of plant hormones and 20-hydroxyecdysone on tomato (Lycopersicon esculentum) seed germination and seedlings growth. Afr J Biotechnol 6:2792–2802
  • Bakrim A, Maria A, Sayah F, Lafont R, Takvorian N (2008) Ecdysteroids in spinach (Spinacia oleracea L.): biosynthesis, transport and regulation of levels. Plant Physiol Biochem 46:844–854. doi: 10.1016/j.plaphy.2008.06.002
  • Dinan L (2001) Phytoecdysteroids: biological aspects. Phytochemistry 57:325–339. doi: 10.1016/S0031-9422(01)00078-4
  • Dinan L (2009) The Karlson lecture. Phytoecdysteroids: what use are they? Arch Insect Biochem Physiol 72:126–141. doi: 10.1002/arch.20334
  • Dinan L, Savchenko T, Whiting P (2001) On the distribution of phytoecdysteroids in plants. Cell Mol Life Sci 58:1121–1132. doi: 10.1007/PL00000926
  • Dinan L, Harmatha J, Volodin V, Lafont R (2009) Phytoecdysteroids: diversity, biosynthesis and distribution. In: Smagghe G (ed) Ecdysone: structures and functions. Springer, Dordrecht, pp. 3-45. doi: 10.1007/978-1-4020-9112-4_1
  • Dreier SI, Towers GHN (1988) Activity of ecdysone in selected plant growth bioassays. J Plant Physiol 132:502–512. doi: 10.1016/S0176-1617(88)80073-7
  • Festucci-Buselli RA, Contim LAS, Barbosa LCA, Stuart J, Otoni WC (2008) Biosynthesis and potential functions of the ecdysteroid 20-hydroxyecdysone—a review. Botany 86:978–987. doi: 10.1139/B08-049
  • Golovatskaya IF (2004) Effect of ecdysterone on morphological and physiological processes in plants. Russ J Plant Physiol 51:452–458.
  • Holá D (2011) Brassinosteroids and photosynthesis. In: Hayat S, Ahmad A (eds) Brassinosteroids: a class of plant hormone. Springer, Dordrecht, pp. 143-192. doi: 10.1007/978-94-007-0189-2_6
  • Janeczko A, Kościelniak J, Pilipowicz M, Szarek-Łukaszewska G, Skoczowski A (2005) Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica 43:293–298. doi: 10.1007/s11099-005-0048-4
  • Janeczko A, Oklešťková J, Pociecha E, Kościelniak J, Mirek M (2011) Physiological effects and transport of 24-epibrassinolide in heat-stressed barley. Acta Physiol Plant 33:1249–1259. doi: 10.1007/s11738-010-0655-y
  • Jiang Y, Cheng F, Zhou Y, Xia X, Mao W, Shi K, Chen Z, Yu J (2012a) Brassinosteroid-induced CO2 assimilation is associated with increased stability of redox-sensitive photosynthetic enzymes in the chloroplasts in cucumber plants. Biochem Biophys Res Commun 426:390–394. doi: 10.1016/j.bbrc.2012.08.100
  • Jiang Y, Cheng F, Zhou Y, Xia X, Mao W, Shi K, Chen Z, Yu J (2012b) Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus. J Zheijiang Univ-Sci B (Biomed Biotechnol) 13:811–823. doi: 10.1631/jzus.B1200130
  • Jiang YP, Cheng F, Zhou YH, Xia XJ, Shi K, Yu JQ (2012c) Interactive effects of CO2 enrichment and brassinosteroid on CO2 assimilation and photosynthetic electron transport in Cucumis sativus. Environ Exp Bot 75:98–106. doi: 10.1016/j.envexpbot.2011.09.002
  • Kamlar M, Uhlík O, Kohout L, Šanda M, Macek T (2010a) Affinity chromatography as the method for brassinosteroid-binding protein isolation. J Biotechnol 150:S490
  • Kamlar M, Uhlík O, Chlubnová I, Kohout L, Harmatha J, Ježek R, Šanda M, Pišvejcová A, Macek T (2010b) Affinity chromatography as a method of studying the mechanism of action of plant oxysterols. Chem Listy 104:215–222 (In Czech)
  • Lafont R, Harmatha J, Marion-Poll F, Dinan L, Wilson ID: The ecdysone handbook, 3rd edn, on-line, http://ecdybase.org. Accessed 25 March 2013
  • Macháčková I, Vágner M, Sláma K (1995) Comparison between the effects of 20-hydroxyecdysone and phytohormones on growth and development in plants. Eur J Entomol 92:309–316
  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394. doi: 10.1016/S0005-2728(89)80347-0
  • Stirbet A, Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B Biol 104:236–257. doi: 10.1016/j.jphotobiol.2010.12.010
  • Strasser BJ (1997) Donor side capacity of photosystem II probed by chlorophyll a fluorescence analysis. Photosynth Res 52:147–155. doi: 10.1023/A:1005896029778
  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism, regulation and adaptation. Taylor & Francis, London, pp 445–483
  • Uhlík O, Kamlar M, Kohout L, Ježek R, Harmatha J, Macek T (2008) Affinity chromatography reveals RuBisCO as an ecdysteroid-binding protein. Steroids 73:1433–1440. doi: 10.1016/j.steroids.2008.07.009
  • Walker D (1988) The use of the oxygen electrode and fluorescence probes in simple measurements of photosynthesis, 2nd edn. Oxygraphics, Sheffield
  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Plant Physiol 144:307–313. doi: 10.1016/S0176-1617(11)81192-2
  • Xia XJ, Huang LF, Zhou YH, Mao WH, Shi K, Wu JX, Asami T, Chen Z, Yu JQ (2009a) Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta 230:1185–1196. doi: 10.1007/s00425-009-1016-1
  • Xia XJ, Zhang Y, Wu JX, Wang JT, Zhou YH, Shi K, Yu YL, Yu JQ (2009b) Brassinosteroids promote metabolism of pesticides in cucumber. J Agric Food Chem 57:8406–8413. doi: 10.1021/jf901915a
  • Xia XJ, Zhou YH, Ding J, Shi K, Asami T, Cheng Z, Yu JQ (2011) Induction of systemic stress tolerance by brassinosteroid in Cucumis sativus. New Phytol 191:706–720. doi: 10.1111/j.1469-8137.2011.03745.x
  • Yu JQ, Huang LF, Hu WH, Zhou YH, Mao WH, Ye SF, Nogués S (2004) A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot 55:1135–1143. doi: 10.1093/jxb/erh124
  • Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Tsimilli-Michael M, Govindjee, Sarin NB (2010) Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim Biophys Acta 1797:1428–1438. doi: 10.1016/j.bbabio.2010.02.002

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7fd7b2cd-154e-46e4-a950-1c8fa5537777
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.