PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 64 | 2 |

Tytuł artykułu

Sequence of post-moult exoskeleton hardening preserved in a trilobite mass moult assemblage from the Lower Ordovician Fezouata Konservat-Lagerstätte, Morocco

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Euarthropods have a tough exoskeleton that provides crucial protection from predation and parasitism. However, this is restrictive to growth and must be periodically moulted. The moulting sequence is well-known from extant arthropods, consisting of: (i) the long inter-moult stage, in which no changes occur to the hardened exoskeleton; (ii) the pre-moult stage where the old exoskeleton is detached and the new one secreted; (iii) exuviation, when the old exoskeleton is moulted; and (iv) the post-moult stage during which the new exoskeleton starts as soft, thin, and partially compressed and gradually hardens to the robust exoskeleton of the inter-moult stage. Trilobite fossils typically consist of inter-moult carcasses or moulted exuviae, but specimens preserving the post-moult stage are rare. Here we describe nine specimens assigned to Symphysurus ebbestadi representing the first group of contemporaneous fossils collected that preserve all key stages of the moulting process in one taxon, including the post-moult stage. They were collected from a single lens in the Tremadocian part of the Fezouata Shale Formation, Morocco. Based on cephalic displacement and comparison to other trilobite moults, one specimen appears to represent a moulted exoskeleton. Four specimens are typical inter-moult carcasses. Four others are wrinkled and flattened, with thin exoskeletons compared to inter-moult specimens, and are considered post-moult individuals. These S. ebbestadi specimens illuminate the preservation and morphology of the post-moulting stage, characterised by strong anterior-posterior exoskeleton wrinkling, as well as overall body flattening and reduced visibility of thoracic articulations. Being found in the same lens, these specimens likely represent the first preserved in-the-act mass moulting event. The displayed sequence of moulting suggests the moulting process in trilobites was comparable to modern arthropods, and conserved within euarthropod evolutionary history.

Wydawca

-

Rocznik

Tom

64

Numer

2

Opis fizyczny

p.261-273,fig.,ref.

Twórcy

autor
  • Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, UK
  • Oxford University Museum of Natural History, Parks Road, OX1 3PW, UK
  • Department of Geology, Ghent University, Campus Sterre, 9000 Ghent, Belgium
autor
  • Department of Geology, Ghent University, Campus Sterre, 9000 Ghent, Belgium
autor
  • Institute of Earth Sciences, University of Lausanne, Geopolis, CH-1015 Lausanne, Switzerland

Bibliografia

  • Bergeron, J. 1895. Notes paleontologiques. Crustaces. Bulletin de la Societe Geologique de France 23: 465–481.
  • Błażejowski, B., Gieszcz, P., Brett, C.E., and Binkowski, M. 2015. A moment from before 365 Ma frozen in time and space. Scientific Reports 5: 1–5.
  • Botting, J.P. 2016. Diversity and ecology of sponges in the Early Ordovician Fezouata Biota, Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology 460: 75–86.
  • Braddy, S.J. 2001. Eurypterid palaeoecology: palaeobiological, ichnological and comparative evidence for a “mass-moult-mate” hypothesis. Palaeogeography, Palaeoclimatology, Palaeoecology 172: 115–132.
  • Brandt, D.S. 1993. Ecydsis in Flexicalymene meeki (Trilobita). Journal of Paleontology 67: 999–1005.
  • Daley, A.C. and Drage, H.B. 2016. The fossil record of ecdysis, and trends in the moulting behaviour of trilobites. Arthropod Structure and Development 45: 71–96.
  • Dalingwater, J.E. 1973. Trilobite cuticle microstructure and composition. Palaeontology 16: 827–839.
  • Dalingwater, J.E., Siveter, D.E., and Mutvei, H. 1999. Cuticular microstructure of some Silurian homalonotid trilobites from Sweden. Journal of Paleontology 73: 256–262.
  • Destombes, J. 1967. Distribution et affinité s des genres de trilobites de l’Ordovicien de l’Anti-Atlas (Maroc). Compte rendu sommaire des séances de la Société géologique de France 4: 133–134.
  • Destombes, J., Hollard, H., and Willefert, S. 1985. Lower Paleozoic rocks of Morocco. In: C.H. Holland (ed.), Lower Paleozoic of North-Western and West-Central Africa, 91–336. Wiley, New York.
  • Drage, H.B. and Daley, A.C. 2016. Recognising moulting behaviour in trilobites by examining morphology, development and preservation: Comment on Błaż ejowski et al. 2015. BioEssays 38: 981–990.
  • Drage, H.B., Holmes, J.D., García-Bellido, D.C., and Daley, A.C. 2018a. An exceptional record of Cambrian trilobite moulting behaviour preserved in the Emu Bay Shale, South Australia. Lethaia 51: 473–492.
  • Drage, H.B., Laibl, L., and Budil, P. 2018b. Post-embryonic development of Dalmanitina, and the evolution of facial suture fusion in Phacopina. Paleobiology 44: 638–659.
  • Ebbestad, J.O.R. 1999. Trilobites of the Tremadoc Bjørkäsholmen Formation in the Oslo Region, Norway. Fossils and Strata 47: 1–118.
  • Ebbestad, J.O.R., Rushton, A.W.A., Stein, M., and Weidner, T. 2013. A paradoxidid moult ensemble from the Cambrian of Sweden. GFF 135: 18–29.
  • Erdtmann, B.-D. 1978. Microstructure of “paper shell” stage (post-ecdysial cuticle) of the Middle Devonian trilobite Phacops rana from Silica Shale of Ohio. Geological Society of America, Abstracts with Programs 10: 252.
  • Ewer, J. 2005. How the ecdysozoan shed its coat. PLoS Biology 3: 1696–1699.
  • Feldmann, R. and Tschudy, D. 1987. Ultrastructure in cuticle from Hoploparia stokesi (Decapoda: Nepropidae) from the Lopez de Bertodano Formation (Late Cretaceous–Paleocene) of Seymour Island, Antarctica. Journal of Paleontology 61: 1194–1203.
  • Filshie, B.K. and Hadley, N.F. 1979. Fine structure of the cuticle of the desert scorpion, Hadrurus arizonensis. Tissue and Cell 11: 249–262.
  • Fortey, R.A. 1986. The type species of the Ordovician trilobite Symphysurus: systematics, functional morphology and terrace ridges. Palä ontologische Zeitschrift 60: 255–275.
  • Fortey, R.A. and Clarkson, E.N.K. 1976. The function of the glabellar “tubercle” in Nileus and other trilobites. Lethaia 9: 101–106.
  • Fortey, R.A. and Wilmot, N. 1991. Trilobite cuticle thicknesses in relation to palaeoenvironment. Paläontologische Zeitschrift 65: 141–151.
  • Gaines, R.R., Briggs, D.E.G., Orr, P.J., and Van Roy, P. 2012. Preservation of giant anomalocaridids in silica-chlorite concretions from the Early Ordovician of Morocco. Palaios 27: 317–325.
  • García-Bellido, D.C. and Collins, D.H. 2004. Moulting arthropod caught in the act. Nature 429: 40.
  • Goldfuss, A. 1843. Systematische Übersicht der Trilobiten und Beschreibung einiger neuer Arten derselben. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde 1843: 537–567.
  • Gutiérrez-Marco, J.C. and Martin, É.L.O. 2016. Biostratigraphy and palaeo ecology of Lower Ordovician graptolites from the Fezouata Shale (Moroccan Anti-Atlas). Palaeogeography, Palaeoclimatology, Palaeoecology 460: 35–49.
  • Gutiérrez-Marco, J.C., Rábano, I., and García-Bellido, D.C. 2018. The nileid trilobite Symphysurus from upper Tremadocian strata of the Moroccan Anti-Atlas: taxonomic reappraisal and palaeoenvironmental implications. Lethaia [published online: https://doi.org/10.1111/let.12297].
  • Hadley, N.F. and Filshie, B.K. 1979. Fine structure of the epicuticle of the desert scorpion, Hadrurus arizonensis, with reference to the location of lipids. Tissue and Cell 11: 263–275.
  • Haug, J.T., Caron, J.-B., and Haug, C. 2013. Demecology in the Cam brian: synchronized molting in arthropods from the Burgess Shale. BMC Biology 11: 1–10.
  • Henningsmoen, G. 1975. Moulting in trilobites. Fossils and Strata 4: 179–200.
  • Hjelle, J.T. 1990. Anatomy and morphology. In: G.A. Polis (ed.), The Biology of Scorpions, 9–63. Stanford University Press, Stanford.
  • Karim, T. and Westrop, S.R. 2002. Taphonomy and palaeoecology of Ordo vician trilobite clusters, Bromide Formation, South-central Oklahoma. Palaios 17: 394–402.
  • Kouraiss, K., El Hariri, K., El Albani, A., Azizi, A., Mazurier, A., and Vannier, J. 2018. X-ray microtomography applied to fossils preserved in compression: Palaeoscolescid worms from the Lower Ordovician Fezouata Shale. Palaeogeography, Palaeoclimatology, Palaeoecology 508: 48–58.
  • Krishnan, G. 1953. On the cuticle of the scorpion Palamneus swammerdami. Quarterly Journal of Microscopical Science 94: 11–21.
  • Lefebvre, B., El Hariri, K., Lerosey-Aubril, R., Servais, T., and Van Roy, P. 2016. The Fezouata Shale (Lower Ordovician, Anti-Atlas, Morocco): a historical review. Palaeogeography, Palaeoclimatology, Palaeoecology 460: 7–23.
  • Lefebvre, B., Gutiérrez-Marco, J.C., Lehnert, O., Nowak, H., Akodad, M., El Hariri, K., and Servais, T. 2017. Age calibration of the Lower Ordovician Fezouata Lagerstätte (Morocco). Lethaia 51: 296–311.
  • Linnaeus, C. 1758. Systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. 824 pp. Salvius, Stockholm.
  • Luquet, G. and Marin, F. 2004. Biomineralisations in crustaceans: storage strategies. Comptes Rendus Palevol 3: 515–534.
  • Martin, É.L.O., Pittet, B., Gutiérrez-Marco, J.C., El Hariri, K.H., LeroseyAubril, R., Masrour, M., Servais, T., Vandenbroucke, T.R.A., Vannier, J., Van Roy, P., Vaucher, R., and Lefebvre, B. 2016a. Age and environmental setting of the Lower Ordovician Fezouata Biota (Zagora, Morocco). Gondwana Research 34: 274–283.
  • Martin, É.L.O., Vidal, M., Vizcaïno, D., Vaucher, R., Sansjofre, P., Lefebvre, B., and Destombes, J. 2016b. Biostratigraphic and palaeonvironmental controls on the trilobite associations from the Lower Ordovician Fezouata Shale of the Central Anti-Atlas, Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology 460: 142–154.
  • Miller, J. and Clarkson, E.N.K. 1980. The post-ecdysial development of the cuticle and the eye of the Devonian trilobite Phacops rana milleri Stewart 1927. Philosophical Transactions of the Royal Society of London B 288: 461–480.
  • Mutvei, H. 1981. Exoskeletal structure in the Ordovician trilobite Flexicalymene. Lethaia 14: 225–234.
  • Nijhout, H.F. 2013. Arthropod developmental endocrinology. In: A. Minelli, G. Boxshall, and G. Fusco (eds.), Arthropod Biology and Evolution: Molecules, Development, Morphology, 123–148. Springer-Verlag, Berlin.
  • Ortega-Hernández, J., Van Roy, P., and Lerosey-Aubril, R. 2016. A new aglaspidid euarthropod with a six-segmented trunk from the Lower Ordovician Fezouata Konservat-Lagerstätte, Morocco. Geological Magazine 153: 524–536.
  • Paterson, J.R., Jago, J.B., Brock, G.A., and Gehling, J.G. 2007. Taphonomy and palaeoecology of the emuellid trilobite Balcoracania dailyi (Early Cambrian, South Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 249: 302–321.
  • Pavan, M. 1958. Studi sugli Scorpioni, IV, Sulla birifrangenza e sella fluorescenza dell’epicuticola. Bolletino della Società entomologica italiana 87: 23–26.
  • Phillips, B.F., Cobb, J.S., and George, R.W. 1980. General biology. In: J.S. Cobb and B.F. Phillips (eds.), The Biology and Management of Lobsters, Volume 1: Physiology and Behavior, 2–72. Academic Press, Inc., New York.
  • Radwański, A., Kin, A., and Radwańska, U. 2009. Queues of blind phacopid trilobites Trimerocephalus: a case of frozen behaviour of Early Famennian age from the Holy Cross Mountains, Central Poland. Acta Geologica Polonica 59: 459–81.
  • Rueden, C.T., Schindelin, J., Hiner, M.C., Dezonia, B.E., Walter, A.E., Arena, E.T., and Eliceiri, K.W. 2017. ImageJ2: ImageJ for the next generation of scientific image data BMC Bioinformatics 18: 529.
  • Rustán, J.J., Balseiro, D., Waisfeld, B., Foglia, R.D., and Vaccari, N.E. 2011. Infaunal molting in Trilobita and escalatory responses against predation. Geology 39: 495–498.
  • Skinner, D.M. 1962. The structure and metabolism of a crustacean integumentary tissue during a molt cycle. Biological Bulletin 123: 635–647.
  • Speyer, S.E. 1983. Trilobite Clustering in the Hamilton Group of New York State. 113 pp. M.Sc. Thesis, University of Rochester, Rochester.
  • Speyer, S.E. 1987. Comparative taphonomy and palaeoecology of trilobite Lagerstätten. Alcheringa 11: 205–232.
  • Speyer, S.E. and Brett, C.E. 1985. Clustered trilobite assemblages in the Middle Devonian Hamilton Group. Lethaia 18: 85–103.
  • Tarling, G.A. and Cuzin-Roudy, J. 2003. Synchronization in the molting and spawning activity of northern krill (Meganyctiphanes norve gica) and its effect on recruitment. Limnology and Oceanography 48: 2020–2033.
  • Teigler, D.J. and Towe, K.M. 1975. Microstructure and composition of the trilobite exoskeleton. Fossils and Strata 4: 137–149.
  • Tetlie, O.E., Brandt, D.S., and Briggs, D.E.G. 2008. Ecdysis in sea scorpions (Chelicerata: Eurypterida). Palaeogeography, Palaeoclimato logy, Palaeoecology 265: 182–194.
  • Van Roy, P. 2006. Non-trilobite Arthropods from the Ordovician of Morocco. xxvii, 230 pp. Unpublished Ph.D. Dissertation, Ghent University, Ghent.
  • Van Roy, P. and Briggs, D.E.G. 2011. A giant Ordovician anomalocaridid. Nature 473: 510–513.
  • Van Roy, P., Briggs, D.E.G., and Gaines, R.R. 2015a. The Fezouata fossils of Morocco – an extraordinary record of marine life in the Ordovician. Journal of the Geological Society 172: 541–549.
  • Van Roy, P. Daley, A.C., and Briggs, D.E.G. 2015b. Anomalocaridid trunk limb homology revealed by a giant filter-feeder with paired flaps. Nature 522: 77–80.
  • Van Roy, P., Orr, P.J., Botting, J.P., Muir, L.A., Vinther, J., Lefebvre, B., El Hariri, K.H., and Briggs, D.E.G. 2010. Ordovician faunas of Burgess Shale type. Nature 365: 215–218.
  • Vaucher, R., Martin, É.L.O, Hormière, H., and Pittet, B. 2016. A genetic link between Konzentrat- and Konservat-Lagerstätten in the Fezouata Shale (Lower Ordovician, Morocco). Palaeogeography, Palaeoclimatology, Palaeoecology 460: 24–34.
  • Vinther, J., Van Roy, P., and Briggs, D.E.G. 2008. Machaeridians are Palaeozoic armoured annelids. Nature 451: 185–188.
  • Vrazo, M.B. and Braddy, S.J. 2011. Testing the “mass-moult-mate” hypothesis of eurypterid palaeoecology. Palaeogeography, Palaeoclimatology, Palaeoecology 311: 63–73.
  • Webster, M. and Hughes, N.C. 1999. Compaction-related deformation in Cambrian olenelloid trilobites and its implications for fossil morphometry. Journal of Paleontology 73: 355–371.
  • Whittington, H.B. 1975. Trilobites with appendages from the Middle Cambrian, Burgess Shale, British Columbia. Fossils and Strata 4: 97–136.
  • Whittington, H.B. 1980. Exoskeleton, moult stage, appendage morphology, and habits of the middle Cambrian trilobite Olenoides serratus. Palaeontology 23: 171–204.
  • Whittington, H.B. 1990. Articulation and exuviation in Cambrian trilobites. Philosophical Transactions of the Royal Society of London B 329: 27–46.
  • Whittington, H.B., Chatterton, B.D.E., Speyer, S.E., Fortey, R.A., Owens, R.M., Chang, W.T., Dean, W.T., Jell, P.A., Laurie, J.R., Palmer, A.R., Repina, L.N., Rushton, A.W.A., Shergold, J.H., Clarkson, E.N.K., Wilmot, N.V., and Kelly, S.R.A. 1997. Treatise on Invertebrate Paleontology, Part O: Trilobita, revised. The Geological Society of America, Inc., Boulder & University of Kansas, Lawrence.
  • Wilmot, N.V. 1990. Primary and diagenetic microstructures in trilobite exoskeletons. Historical Biology 4: 51–65.
  • Yang, J., Ortega-Hernández, J., Drage, H.B., Du, K.-S., and Zhang, X.-G. 2019. Ecdysis in a stem-group euarthropod from the early Cambrian of China. Scientific Reports [published online: https://doi.org/10.1038/s41598-019-41911-w].

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7f982ac0-1bd0-4901-8de2-8c3a42c9d180
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.