PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 67 | 07 |

Tytuł artykułu

Peptydy przeciwdrobnoustrojowe - rys historyczny i mechanizm ich działania

Warianty tytułu

EN
Antimicrobial peptides: outline of the history of studies and mode of action

Języki publikacji

PL

Abstrakty

EN
By now, over 800 different antimicrobial peptides have been identified in fauna and flora. Antimicrobial peptides (AMPs) are an important part of the innate immunity of all living organisms. The first animal AMP was found in 1962 by Kiss and Michl in the venomous skin secretion of the orange speckled frog Bombina variegata. Most known AMPs are multifunctional as effectors of innate immunity and have direct antimicrobial activity against various bacteria, enveloped viruses, and fungi. Most of them share a common mechanism of antimicrobial action: permeabilization of the cell membrane of the pathogen. There is a real chance to use these peptides for developing a new generation of medicines. The present review outlines the history of studies on antimicrobial peptides and the current state of knowledge about their activity.

Wydawca

-

Rocznik

Tom

67

Numer

07

Opis fizyczny

s.444-448,bibliogr.

Twórcy

autor
  • Instytut Genetyki i Hodowli Zwierząt Polskiej Akademii Nauk w Jastrzębcu, ul.Postępu 1, 05-552 Wólka Kosowska
autor

Bibliografia

  • 1.Andreu D., Rivas L.: Animal antimicrobial peptides: An overview. Biopolymers (Peptide Sciences) 1998, 47, 415-433.
  • 2.Araki K., Tachibana S., Uchiyama M., Nakajima T., Yasuhara T.: Isolation and structure of a new active peptide "Xenopsin" on the smooth muscle, especially on a strip of fundus from a rat stomach, from the skin of Xenopus laevis. Chem. Pharm. Bull. (Tokyo) 1973, 21, 2801-2804.
  • 3.Baker M. A., Maloy W. L., Zasloff M., Jacob L. S.: Anticancer efficacy of magainin 2 and analogue peptides. Cancer Res. 1993, 53, 3052-3057.
  • 4.Boman H. G.: Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 1995, 13, 61-92.
  • 5.Bradbury J.: Frog skin hope for HIV prevention. Drug Discov. Today 2005, 22, 1489-1490.
  • 6.Brogden K. A.: Antimicrobial peptides: pore formation or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238-250.
  • 7.Brogden K. A., Ackermann M., McCray Jr. P. B., Tack B. F.: Antimicrobial peptides in animals and their role in host defence. Int. J. Antimicrob. 2003, 22, 465-478.
  • 8.Carraway R. E., Cochrane D. E., Ruane S. E.: Isolation, structures, and biologic activity of neurotensin-related peptides generated in extracts of avian tissue. J. Biol. Chem. 1987, 262, 15886-15889.
  • 9.Cole A. M., Hong T., Boo L. M., Nguyen T., Zhao C., Bristol G., Zack J. A., Waring A. J., Yang O. O., Lehrer R. I.: Retrocyclin: A primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1. PNAS USA 2002, 99, 1813-1818.
  • 10.Daher K. A., Selsted M. E., Lehrer R. I.: Direct inactivation of viruses by human granulocyte defensins. J. Virol. 1986, 60, 1068-1074.
  • 11.Diamond G., Jones D. E., Bevins C. J.: Airway epithelial cells are the site of expression of a mammalian antimicrobial peptide gene. PNAS USA 1993, 90, 4596-4600.
  • 12.Ganz T., Lehrer R. I.: Antibiotic peptides from higher eukaryotes: biology and applications. Mol. Med. Today 1999, 5, 292-297.
  • 13.Ganz T., Selsted M. E., Szklarek D., Harwig S. S. L., Daher K., Bainton D. F., Lehrer R. I.: Natural peptide antibiotics of human neutrophils. J. Clin. Invest. 1985, 76, 1424-1435.
  • 14.Gazit E., Boman A., Boman H. G., Shai Y.: Interaction of the mammalian antibacterial peptide cecropin P1 with phosholipid vesicles. Biochemistry 1995, 34, 11479-11488.
  • 15.Gerritsen V. B.: When a frog swallows a fly. Protein Spotlight 2001, 7
  • 16.Gordon Y. J., Romanowski E. G.: A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr. Eye Res. 2005, 30, 505-515.
  • 17.Habermann E.: Bee and wasp venoms. Science 1972, 177, 314-322.
  • 18.Hancock R. E. W., Chapple D. S.: Peptide antibiotics. Minireview. Antimicrob. Agents 1999, 43, 1317-1323.
  • 19.Kagan B. L., Selsted M. E., Ganz T., Lehrer R. I.: Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. PNAS USA 1990, 87, 210-214.
  • 20.Kiss G., Michl H.: On the venomus skin secretion of the orange speckled frog Bombina variegata. Toxicon 1962, 1, 33-39.
  • 21.Krause A., Neitz S., M H.-J., Schulz A., Forssmann W.-G., Schulz-Knappe P., Adermann K.: LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Letters 2000, 480, 147-150.
  • 22.Leeuw de E., Lu W.: Human defensins: Turning defense into ofense? Infectious Disorders - Drug Targets 2007, 7, 67-70.
  • 23.Lehrer R. I., Ganz T.: Antimicrobial peptides in mammalian and insect host defence. Curr. Opin. Immunol. 1999, 11, 23-27.
  • 24.Lehrer R. I., Ganz T.: Cathelicidins: a family of endogenous antimicrobial peptides. Curr. Opin. Hematol. 2002, 9, 18-22.
  • 25.Lorin C., Saidi H., Belaid A., Zairi A., Baleux F. H., Bélec L., Hani K., Tangy F.: The atimicrobial peptide deramseptin S4 inhibits HIV-1 infectivity in vitro. Virology 2005, 334, 264-275.
  • 26.Matsuzaki K.: Why and how are peptide-lipid interactions utilized for selfdefense? Magainins and tachylepsins as archetypes. Biochim. Biophys. Acta 1999, 1462, 1-10.
  • 27.Park C. H., Valore E. V., Waring A. J., Ganz T.: Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem. 2001, 276, 7806-7810.
  • 28.Ritonja A., Kopitar M., Jerala R., Turk V.: Primary structure of a new cysteine proteinase inhibitor from pig leucocytes. FEBS Letters 1989, 255, 211-214.
  • 29.Selsted M. E., Harwig S. S. L., Ganz T., Schilling J. W., Lehrer R. I.: Primary structures of three human neutrophil defensins. J. Clin. Invest. 1985, 76, 1436-1439.
  • 30.Selsted M. E., Tang Y. Q., Morris W. L., McGuire P. A., Novotny M. J., Smith W., Henschen A. H., Cullor J. S.: Purification, primary structures, and antibacterial activities of â-defensins, a new family of antimicrobial peptides from bovine neutrophils. J. Biol. Chem. 1993, 268, 6641-6648.
  • 31.Soravia E., Martini G., Zasloff M.: Antimicrobial properties of peptides from Xenopus granular gland secretions. FEBS Letters 1988, 228, 337-340.
  • 32.Tang Y. Q., Yuan J., Osapay G., Osapay K., Tran D., Miller C. J., Outllette A. J., Selsted M. E.: A cyclic antimicrobial peptide produced in primate lucocytes by the ligation of two truncated alpha-defensin. Science 1999, 286, 489-502.
  • 33.White S. H., Wimley W. C., Selsted M. E.: Structure, function, and membrane integration of defensins. Curr. Opin. Struc. Biol. 1995, 5, 521-527.
  • 34.Wiechuła B. E., Tustanowski J. P., Martirosian G.: Peptydy antydrobnoustrojowe. Wiad. Lek. 2006, 59, 542-547.
  • 35.Zasloff M.: Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor (vertebrate peptide antibiotics). PNAS USA 1987, 84, 5449-5453.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7e36f509-7e21-418e-b1b0-e12f5732a8a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.