PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2020 | 164 | 11 |

Tytuł artykułu

Wpływ klimatu na przyrost radialny sosny zwyczajnej na siedliskach suchych oraz bagiennych w trzech regionach Polski

Autorzy

Treść / Zawartość

Warianty tytułu

EN
Effect of climate on the radial growth of Scots pine growing at dry and boggy sites in three regions in Poland

Języki publikacji

PL

Abstrakty

EN
The study examined the sensitivity to air temperature and precipitation of 18 Scots pine stands growing at dry and boggy coniferous forest habitats in Białowieska (BIA), Świętokrzyska (SWI) and Solska (SOL) Primeval Forests. At each plot, 20 healthy and undamaged pine trees were sampled (two cores per tree). The cores were scanned and the CooRecorder & CDendro 7.8 image analysis software was used for measuring tree−ring widths. The standardization of the individual tree−ring series for removing no−climatic variations was employed. For each stand the index chronology was constructed on the basis of individual index series. The grouping of site chronologies was performed by the cluster analysis. The principal components analysis was applied to identify common characteristics of chronologies. Correlation analysis was used in order to identify the climatic elements described by the main components. The first component (PC1) highlighted the variability common to all chronologies and described the average air temperature in February, March and May, and the total precipitation in June and July in the year of tree−ring formation. Regardless of the region and the site habitat, pines increased the radial increment when winter was warm and short, spring was cold and summer was abundant in precipitation. The PC3 distinguished pines growing in BIA. Scots pine increased radial growth when it was cold in June. The PC2 described climatic elements whose influence on the radial growth of Scots pine in both habitats was different. Therefore, the PC2 indicates that the pines from BIA growing at boggy and dry habitats reacted differently to precipitation in February and April. The pines at both these habitats in SOL differed in sensitivity to precipitation in February, May and August, while the trees in SWI only to precipitation in February. The results indicate that differences in climatic conditions between the regions were reflected in the size of the wood formed by the trees. On the other hand, site conditions modify significantly these relations. Therefore, due to the wide geographical range and habitats occupied by Scots pine, the climate−radial increment relationships should be analyzed in detail in any case.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

164

Numer

11

Opis fizyczny

s.896-905,rys.,bibliogr.

Twórcy

  • Katedra Ochrony Ekosystemów Leśnych, Uniwersytet Rolniczy w Krakowie, al. 29 Listopada 46, 31-425 Kraków

Bibliografia

  • Bogaciński B., Zajączkowski S., Wodzicki T. 1988. Zmienność inicjacji i kończenia sezonowej aktywności kambium w populacjach drzewostanowych Pinus sylvestris L. Sylwan 132 (1): 17-26.
  • Cedro A. 2001. Dependence of radial growth of Pinus sylvestris L. from western Pomerania on the rainfall and temperature conditions. Geochronometria 20: 69-74.
  • Cedro A., Lamentowicz M. 2011. Contrasting responses to environmental changes by pine (Pinus sylvestris L.) growing on peat and mineral soil: An example from a Polish Baltic bog. Dendrochronologia 29: 211-217.
  • Dauškane I., Brűmelis G., Elferts D. 2011. Effect of climate on extreme radial growth of Scots pine growing on bogs in Latvia. Estonian Journal of Ecology 60 (3): 236-248. DOI: https://doi.org/10.3176/eco.2011.3.06.
  • Elferts D. 2007. Scots pine pointer-years in northwestern Latvia and their relationship with climatic factors. Acta Universitatis Latviensis 723: 163-170.
  • Ermich K. 1959. Badania nad sezonowym przebiegiem przyrostu grubości pnia u Pinus silvestris L., i Quercus robur L. Botanicorum Poloniae Acta Societatis 28 (1): 15-63.
  • Fritts H. C. 1976. Tree Rings and Climate. Acad. Press, London.
  • Gricar J., Zupancic M., Cufar K., Koch G., Schmitt U. W. E., Oven P. 2006. Effect of local heating and cooling on cambial activity and cell differentiation in the stem of Norway spruce (Picea abies). Annals of Botany 97 (6): 943-951.
  • Havranek M., Tranquillini W. 1995. Physiological processes during their winter dormancy and their ecological significance. W: Smith W. K., Hinkley T. M. [red.]. Ecophysiology of Coniferous Forest, Academic Press, New York. 95-124.
  • Holmes R. L. 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43: 69-78.
  • Holstener-Jřrgensen H. 1967. Influences of forest management and drainage on groundwater fluctuations. W: Sopper W. E., Lull H. W. [red.]. Forest hydrology. Pergamon Press, Oxford. 325-480.
  • Hordo M., Metslaid S., Kiviste A. 2009. Response of Scots pine (Pinus sylvestris L.) radial growth to climate factors in Estonia. Baltic Forestry 15 (2): 195-205.
  • Läänelaid A., Eckstein D. 2003. Development of a tree-ring chronology of Scots pine (Pinus sylvestris L.) for Estonia as a dating tool and climatic proxy. Baltic Forestry 9 (2): 76-82.
  • Linderholm H. W. 2001. Climatic influence on Scots pine growth on dry and wet soils in the central Scandinavian Mountains, interpreted from tree-ring widths. Silva Fennica 35: 415-424.
  • Linderholm H. W., Leine M. 2004. An assessment of twentieth century tree-cover changes on asouthern Swedish peatland combining dendrochronology and areal photograph analysis. Wetlands 24: 357-363.
  • Linderholm H. W., Moberg A., Grudd H. 2002. Peatland pine as a climate indicator? A regional comparison of the climatic influence on Scots pine growth in Sweden. Canadian Journal Forest Research 32: 1400-1410.
  • Lindholm M., Lehtonen H., Kolström T., Meriläinen J., Eronen M., Timonen M. 2000. Climatic signals extracted from ring-width chronologies of Scots pine from the northern, middle and southern parts of the boreal forest belt in Finland. Silva Fennica 34: 317-329.
  • Lindholm M., Meriläinen J., Timonen M., Vanninen P., Eronen M. 1997. Effects of climate on the growth of Scots pine in the Saimaa Lake District, south-eastern Finland, in the southern part of the boreal forest belt. Dendrochronologia 15: 151-168.
  • Mannerkoski H. 1991. Relation between tree roots and soil aeration on drained peatlands. W: Jeglum J. K., Overend R. P. [red.]. Peat and Peatlands – Diversification and Innovation. Canadian Society for Peat and Peatlands: 109-114.
  • Muter E. 2004. Dynamika przyrostu na grubość i jej uwarunkowania u wybranych gatunków drzew w Puszczy Niepołomickiej. Maszynopis pracy doktorskiej. Uniwersytet Rolniczy w Krakowie.
  • Oberhuber W., Gruber A., Kofler W., Swidrak I. 2014. Radial stem growth in response to microclimate and soil moisture in a drought-prone mixed coniferous forest at an inner Alpine site. European Journal Forest Research 133: 467-479. DOI: https://doi.org/10.1007/s10342-013-0777-z.
  • Pärn H. 2009. Temporal history of relationships between Scots pine (Pinus sylvestris L.) growth and mean monthly temperatures. Baltic Forestry 15 (1): 48-57.
  • Pilcher J. R., Baillie M. G. L., Brown D. M., McCormac F. G., MacSweeny P. B., McLawrence A. S. 1995. Dendrochronology of subfossil pine in the north of Ireland. Journal of Ecology 83 (4): 665-671. DOI: https://doi.org/10.2307/2261634.
  • Pretzsch H., Köbel M. 1988. Einfluss von Grundwasserabsenkungen auf das Wuchsverhalten der Kiefernbestände im Gebiet des Nürnberg Hafens. Forstarchiv 59 (3): 89-96.
  • Rossi S., Deslauriers A., Anfodillo T. 2006. Assessment of cambial activity and xylogenesis by microsampling tree species: an example at the alpine timberline. IAWA Journal. 27 (4): 383-394.
  • Rötzer T., Grote R., Pretzsch H. 2004. The timing of bud burst and its effect on tree growth. International Journal Biometeorology 48: 109-118.
  • Rydin H., Jeglum J. 2006. The Biology of Peatlands. Oxford University Press, Oxford.
  • Stravinskiene V., Juknys R. 1998. The climatic signal in radial growth variations of Pinus sylvestris L. trees growing in raised bog habitat. Proceeding of the International Conference Dendrochronology and Environmental Trends. Kaunas, Lithuania.
  • Tuovinen M. 2005. Response of tree-ring width and density of Pinus sylvestris to climate beyond the continuous northern forest line in Finland. Dendrochronologia 22: 83-91.
  • Vaganov E. A., Kachaev A. V. 1992. Dendroclimatic analysis of pine growth in forest-bog phytocenoses of Tomsk province. Lesovedenie 6: 3-10.
  • Vitas A. 2004. Dendroclimatological research of Scots pine (Pinus sylvestris L.) in the Baltic coastal zone of Lithuania. Baltic Forestry 10 (1): 65-71.
  • Wilczyński S. 2003. Modele klimat-przyrost radialny sosen z Tatr, Pienin i Ojcowa. Sylwan 147 (12): 27-35. DOI: https://doi.org/10.26202/sylwan.2003243.
  • Wilczyński S. 2010. Uwarunkowania przyrostu radialnego wybranych gatunków drzew z Wyżyny Kieleckiej w świetle analiz dendrochronologicznych. Zeszyty Naukowe UR w Krakowie 464 (341).
  • Wilczyński S. 2013. Przyczyny krótkookresowych reakcji przyrostowych sosen z różnych siedlisk. Sylwan 157 (9): 662-670. DOI: https://doi.org/10.26202/sylwan.2013006.
  • Wilczyński S. 2020. Zapis zmian zachodzących w środowisku przez sosnę zwyczajną oraz sosnę Banksa. Sylwan 164 (7): 583-593. DOI: https://doi.org/10.26202/sylwan.2020040.
  • Zunde M., Briede A., Elferts D. 2008. The influence of climatic factors on the radial growth of Scots pine (Pinus sylvestris) in Western Latvia. Proceedings of the Latvian Academy of Sciences. 62 (3): 120-128. DOI: https://doi.org/10.2478/v10046-008-0015-0.

Typ dokumentu

Bibliografia

Identyfikatory

DOI

Identyfikator YADDA

bwmeta1.element.agro-7dcd840d-f43e-4d54-828c-b75410369d24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.