PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 64 | 2 |

Tytuł artykułu

Ecological strategy at cell size level to respond to stressed environments

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The cell size variations in woody plants in various environments are not well known, and the underlying mechanism has not been fully analyzed. 2. The current study focused on the intraspecific and interspecific size variations in palisade cells occurring in 76 woody species along an elevation gradient (1800–4500 m a.s.l.) on Gongga Montain (1400–7552 m a.s.l.) in southwest China, which included tropical and subtropical genera of broad-leaved forest flora including Salix hyperba as the species occurring on all elevations. We hypothesized that cell size is regulated by alterations in width-length scaling (L-D ratio) to mediate a surface-to-volume ratio (S/V) most suitable for the prevailing environmental conditions. 3. It was observed that cell size co-varied similarly with environmental conditions at the conspecifics, congenerics, and interspecifics levels investigated. Cell sizes decreased among conspecifics, or increase among congenerics and interspecifics via negative or positive scaling of width-length ratio at the cellular level. However, this dichotomously differing tendency may be ecologically constrained by both a cost-increasing and benefit-diminishing mechanism of cell dimension with increasing elevation at the species level, implying a ‘middle way’ strategy for species to stressed environments. 4. The implications of the results for regional floristic evolution are discussed.

Wydawca

-

Rocznik

Tom

64

Numer

2

Opis fizyczny

p.165-177,fig.,ref.

Twórcy

autor
  • Institute of Landscape Ecology of Montane Horticulture, Southwest University, Chongqing 400716, China
autor
  • Institute of Landscape Ecology of Montane Horticulture, Southwest University, Chongqing 400716, China
autor
  • Institute of Landscape Ecology of Montane Horticulture, Southwest University, Chongqing 400716, China
  • Department of Botany, College of Horticulture and Landscape, Southwest University, Chongqing 400716, China

Bibliografia

  • Brodribb T.J., Jordan G.J., Carpenter R.J. 2013 - Unified changes in cell size permit coordinated leaf evolution - New Phytol. 199: 559–570.
  • Cornwell W.K., Bhaskar R., Sack L., Cordell S., Lunch C.K. 2007 - Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation - Funct. Ecol. 21: 1063–1071.
  • Dickison W.C. 2000 - Integrative plant anatomy - Academic Press, Califorlia, pp. 297–311.
  • Doblin M.S., Vergara C.E., Read S., Newbigin E., Bacic A. 2003 - Plant cell wall biosynthesis: making the bricks - The plant cell wall, 8: 183–222.
  • Fajardo A., Piper F.I., Hoch G. 2013 - Similar variation in carbon storage between deciduous and evergreen treeline species across elevational gradients - Ann Bot. 112: 623–631.
  • Falster D.S., Warton D.I., Wright I.J. 2006 - SMATR: standardised major axis tests and routines, available online: http://www.bio.mq.edu.au/ecology/SMATR/ [cited 2014-09-28].
  • Hartikainen K., Nerg A.M., Kivimaenpaa M., et al. 2009 - Emissions of volatile organic compounds and leaf structural characteristics of European aspen Populus tremula - grown under elevated ozone and temperature - Tree Physiol. 29: 1163–1173.
  • Huber H., De Brouwer J., Von Wettberg E.J., During H.J., Anten N.P.R. 2014 - More cells, bigger cells or simply reorganization? Alternative mechanisms leading to changed internode architecture under contrasting stress regimes - New Phytol. 201: 193–204.
  • John G.P., Scoffoni C., Sack L. 2013 - Allometry of cells and tissues within leaves - Am. J. Bot. 100: 1936–1948.
  • Körner C. 2003 - Alpine plant life: functional plant ecology of high mountain ecosystems - Springer, Berlin, pp. 235–237.
  • Körner C. 2012 - Alpine treelines: functional ecology of the global high elevation tree limits - Springer, Berlin, pp. 63–70.
  • Körner C., Pelaez M.-R.S., John P. 1989 - Why are bonsai plants small? A consideration of cell size - Funct. Plant Biol. 16: 443–448.
  • Levy D.L., Heald R. 2012 - Mechanisms of intracellular scaling - Annu. Rev. Cell. Dev. Biol. 128: 113–135.
  • Markesteijn L., Poorter L., Bongers F. 2007 - Light-dependent leaf trait variation in 43 tropical dry forest tree species - Am. J. Bot. 94: 515–525.
  • Mitani H., Naruse K., Shima A., 1989 - Eurythermic and stenothermic growth of cultured fish cells and their thermosensitivity - J. Cell Sci. 93: 731–737.
  • Niklas K.J. 2009 - Functional adaptation and phenotypic plasticity at the cellular and whole plant level - J. Biosciences, 34: 613–620.
  • Pantin F., Simonneau T., Muller B. 2012 - Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny - New Phytol. 196: 349–366.
  • Pitman E.T.G. 1939 - A note on normal correlation - Biometrika, 31: 9–12.
  • Pyankov V.I., Kondrachuk A.V. 2003 - Basic types of structural changes in the leaf mesophyll during adaptation of Eastern Pamir plants to mountain conditions - Russ. J. Plant Physl. 50: 28–35.
  • Pyankov V.I., Kondratchuk A.V., Shipley B. 1999 - Leaf structure and specific leaf mass: the alpine desert plants of the Eastern Pamirs, Tadjikistan - New Phytol. 143: 131–142.
  • Savage V.M., Allen A.P., Brown J.H., et al. 2007 - Scaling of number, size, and metabolic rate of cells with body size in mammals - Proc. Nat. Acad. Sci. USA, 104: 4718–4723.
  • Shen Z., Liu Z., Wu J. 2004 - [Altitudinal pattern of flora on the eastern slope of Mt. Gongga] - Biodivers. Sci. 12: 89–98 (in Chinese, English abstract).
  • Shipley B., Lechowicz M.J., Wright I., Reich P.B. 2006 - Fundamental trade-offs generating the worldwide leaf economics spectrum - Ecology, 87: 535–541.
  • Warton D.I., Weber N.C. 2002 - Common slope tests for bivariate errors-in-variables models - Biom. J. 44: 161.
  • Weijschedé J., Antonise K., De Caluwe H., De Kroon H., Huber H. 2008 - Effects of cell number and cell size on petiole length variation in a stoloniferous herb - Am. J. Bot. 95: 41–49.
  • Wu Z.Y. 1991- The areal-types of Chinese genera of seed plants - Acta Botanica Yunnanica, 4: 1–139.

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-7b20cc62-b01e-48da-9658-4aa0d8608586
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.