PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 21 | 3 |

Tytuł artykułu

Water as a source of macronutrients and micronutrients for fish with special emphasis on the nutritional requirements of two fish species: the common carp (Cyprinus carpio) and the rainbow trout (Oncorhynchus mykiss)

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In contrast to terrestrial animals, fish can ingest minerals from food or directly from water. Although micro- and macro-elements are needed in small quantities, they play a key role in many metabolic processes. Trace mineral and macromineral deficiencies may go unnoticed due to an absence of clear clinical symptoms in fish. Absorption processes are determined by various factors, mostly mineral concentrations in water but also other water parameters. The required dietary supplementation of macronutrients and micronutrients is very difficult to determine, and the amount of nutrients absorbed by fish from water is equally difficult to measure. Interactions between elements should also be taken into consideration. Many authors emphasize that phosphates may reduce the absorption of most micronutrients. Also, the current parameters of the water can affect the bioavailability. Some elements such as calcium, chlorine and sodium can be absorbed from ambient water in a quantity sufficient to meet the demand for this element. Other elements, however, require supplementation in a diet. For example, studies indicate the need for supplementation of phosphorus, zinc, copper and manganese. Most research concentrates on feedstuff as a source of micro- and macronutrients. Meanwhile, information concerning bioavailability of minerals directly from water is scarce. The aim of this study was to analyse literature from a different perspective, and concentrate on water as a source of minerals in fish nutrition. Measurements of water parameters such as temperature, pH, nitrate and nitrite levels and the amount of dissolved oxygen are a regular component of environmental control in fish farming. Determination of micro- and macro-element levels, however, remains uncommon in aquaculture. Measurements of these parameters could suggest which elements need to be supplemented and which are found in water in amounts that satisfy the needs of the fish.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

21

Numer

3

Opis fizyczny

p.947-961,ref.

Twórcy

  • Chair of Epizootiology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland
autor
  • Chair of Epizootiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
autor
  • Department of Pathology and Immunology, National Inland Fisheries Institute, Zabieniec near Warsaw, Poland

Bibliografia

  • Allen P. 1993. Effects of acute exposure to cadmium (II) chloride and lead (II) chloride on the hematological profile of Oreochromis aureus (Steindachner). Comp. Biochem. Physiol., 105C: 213-217.
  • Bojarski B., Ludwikowska A., Popek J., Szczerbik P., Klaczak A., Lutnicka H., Popek W. 2014.Ichthyofauna and ecological inventory of watercourses carrying water in a fish pond farm. Kom. Ryb., 2: 17- 23. (in Polish)
  • Brucka-Jastrzębska E., Kawczuga D., Rajkowska M., Protasowicki M. 2009. Levels of microelements cu, Zn, Fe) and macroelements (Mg, Ca) in freshwater fish. J.Elementol., 14(3): 437-447.
  • Brucka-Jastrzębska E., Kawczuga D., Protasowicki M., Rajkowska M. 2010. Effect of culture conditions on magnesium and zinc concentrations in muscles of freshwater fish. J. Elementol., 15(2): 239-250.
  • Bury N.R., Walker P.A., Glover C.N. 2003. Nutritive metal uptake in teleost fish. J. Exp. Biol., 206: 11-23.
  • Comhaire S., Blust R., Van Ginneken L., i Vanderborght O.L.J. 1994. Cobalt uptake across the gills of the common car, Cyprinus carpio, as a function of calcium-concentration in the water of acclimation exposure. Comp. Biochem. Physiol. C, 109: 63-76.
  • Comhaire S., Blust R., Van Ginneken L., D’haeseleer F., Vanderborght O. 1997. Calcium influences radio-cobalt uptake by the common carp, Cyprinus carpio. Elsevier, Stud. Environ. Sci., 68: 321-328.
  • Cooper C.A., Bury N.R. 2007. The gills as an important uptake route for the essential nutrient iron in freshwater rainbow trout Oncorhynchus mykiss. J. Fish Biol., 71: 115-128.
  • Cowey C. B., Knox D., Adron J.W., George S., Pirie B. 1977. The production of renal calcinosis by magnesium deficiency in rainbow trout (Salmo gairdneri). Brit. J. Nutr., 38: 127-135.
  • Davis D.A., Gatlin D.M. 1996. Dietary mineral requirements of fish and marine crustacean. Rev. Fish. Sci., 4(I): 75-99.
  • Handy R.D. 1993. The effect of acute-exposure to dietary Cd and Cu on organ toxicant concentrations in rainbow trout, Oncorhynchus mykiss. Aquatic Toxicol., 27: 1-14.
  • Hellawell J.M.1988. Toxic substances in rivers and streams. Environ. Pollut., 50: 61-85.
  • Kalantarian S.H., Rafiee G.H., Farhangi M., Mojazi Amiri B. 2013. Effect of different levels of dietary calcium and potassium on growth indices, biochemical composition and some whole body minerals in rainbow trout (Oncorhynchus mykiss) Fingerlings. J. Aquac. Res. Develop., 4: 170. DOI: 10.4172/2155-9546.1000170
  • Kamunde C., Grosell M., Higg s D., Wood C.M. 2002. Copper metabolism in actively growing rainbow trout (Oncorhynchus mykiss): interactions between dietary and waterborne copper uptake. J. Exp. Biol., 205: 279-290.
  • Kopp R., Lang Š., Brabec T., Mares J. 2013: Influence of physicochemical parameters of water on plasma indices in brook trout (Salvelinus fontinalis Mitchill) reared under conditions of intensive aquaculture. Acta Vet. Brno, 82(40: 367-373.
  • Krupowa H., Machova J., Svobodova Z. 2005. Nitrite influence on fish: a review. Vet.Med. – Czech, 50(11): 461-471.
  • Lundabye A.K., Berntsse, M.H.G., Wendelaar S.E., Boga I., Maage A. 1999. Biochemical and pchysiological responses in Atlantic Salmon (Salmo salar) following dietary exposure to copper and cadmium. Mar. Pollut. Bull., 39(1-12): 137-144.
  • Lushchak V.I., Bagnyukova T. V., Lushchak O. V., Storey J. M., Storey K. B. 2005. Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp (Cyprinus carpio) tissues. Int. J. Bioch. Cell Biol., 37: 1319-1330.
  • Miller P.A., Lanno R.P., McMaster M.E., Dixon D.G. 1993. Relative contributions of dietary and waterborne copper to tissue copper burdens and waterborne copper tolerance in rainbow trout (Onchorhynchus mykiss). Can. J. Fish. Aquat. Sci., 50: 1683-1689.
  • Murkherjee S., Kaviraj A., 2009. Evaluation of growth and bioaccumulation of cobalt in different tissues of common carp, Cyprinus carpio (Actinopterygii: Cypriniformes: Cyprinidae), fed cobalt-supplemented diets. Acta Ichtiol. Piscat., 39: 87-93.
  • Niyogi S., Pyle G.G., Wood C.M. 2007. Branchial versus intestinal zinc uptake in wild yellow perch (Perca flavescens) from reference and metal-contaminated aquatic ecosystems. Can. J. Fish. Aquat. Sci., 64: 1605-1613.National Research Council (NR C) 1983. Nutrient requirements of warmwater fishes and shellfishes. National Academy Press, Washington DC., USA, 102.
  • Ogino C., Chiou J.Y. 1976. Mineral requirements in fish-II. Magnesium requirement of carp. Bull. Jap. Soc. Sci. Fish, 42: 71-75.
  • Ogino C., Takeda H. 1976. Mineral requirements in fish-III. Calcium and phosphorus requirements in carp. Bull. Jap. Soc. Sci. Fish, 42: 793-799.
  • Poczyczyński P., Woźniak M. 2014. Artificial feeds in fish nutrition. V. Micronutrients – vitamins and minerals. Kom. Ryb., 1: 33-34. (in Polish)
  • Satoh S., Yoshinaka R, Ikeda S. 1983a. Effects on growth and mineral composition of carp of deletion of trace elements or magnesium from fish meal diet. Bull. Jap. Soc. Sci. Fish, 49: 431-435.
  • Satoh S., Yamamoto H., Takeuchi T., Watanabe T. 1983b. Effects on growth and mineral composition of rainbow trout of deletion of trace elements or magnesium from fish meal diet. Bull. Jap. Soc. Sci. Fish, 49: 425-429.
  • Satoh S., Tabata K., Izume K., Takeuchi T., Watanabe T. 1987. Effect of dietary tricalcium phosphate on availability of zinc to rainbow trout. Bull. Jap. Soc. Sci. Fish, 53: 1199-1205.
  • Shi J.S., Camus A.C. 2006. Hepcidins in amphibians and fishes: antimicrobial peptides or iron-regulatory hormones. Dev. Comp. Immunol., 30(9): 746-755.
  • Tacon A.G.J., De Silva S.S. 1983. Mineral composition of some commercial fish feeds available in Europe. Aquaculture, 31: 11-20.
  • Tacon A.G.J. 1987. The nutrition and feeding of farmed fish and shrimp – A training manual.
  • The essential nutrients. FAO Corporate Document Repository. http://www.fao.org/docrep/ field/003/ab470e/AB470E06.htm#ch6
  • Thomas M.B., Thomas W., Hornstein T.W., Hedman S.C. 1999. Seasonal leukocytes and erythrocytes counts in fathead minnows. J. Fish Biol., 54: 1116-1178.
  • Watanabe T., Satoh S., Takeuchi T. 1988. Availability of minerals in fish meal to fish. Department of Aquatic Biosciences, Tokyo University of Fisheries, Asian Fisheries Science, 175-195.
  • Watanabe T., Kiron V., Satoh S. 1997. Trace minerals in fish nutrition. Aquaculture, 151: 185-207.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7950cd7f-debf-461b-94e3-bd66255a4687
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.