EN
Cadmium (Cd) is a major environmental toxicant to plant cells due to its potential inhibitory effects on many physiological processes. To gain a comprehensive understanding of plant response to Cd, wheat seedlings were exposed to a range of Cd concentrations (10, 100 and 200 µM) for 1 week and a combination of physiological and proteomic approaches were used to evidence Cd effects and to access the plant response to Cd toxicity. Root and shoot elongation was decreased, whereas the H₂O₂ and malondialdehyde content in wheat seedlings was increased significantly at higher Cd concentration. Protein profiles analyzed by two-dimensional electrophoresis revealed that 46 protein spots showed 1.5-fold change in protein abundance following Cd exposure; 31 protein spots were upregulated and 15 protein spots were down-regulated; 25 of them were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. As expected, most of the up-regulated proteins are involved in heavy metal detoxification and antioxidant processes. Enzyme activity analysis revealed that ascorbate peroxidase and glutathione S-transferase activity was stimulated by Cd treatment. Abundance changes of these proteins, together with their putative functions provide us a new insight that can lead to an integrated understanding of the molecular basis of Cd responses in plants.