PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 2 |

Tytuł artykułu

Comparative proteomic analysis of Cd-responsive proteins in wheat roots

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Cadmium (Cd) is a major environmental toxicant to plant cells due to its potential inhibitory effects on many physiological processes. To gain a comprehensive understanding of plant response to Cd, wheat seedlings were exposed to a range of Cd concentrations (10, 100 and 200 µM) for 1 week and a combination of physiological and proteomic approaches were used to evidence Cd effects and to access the plant response to Cd toxicity. Root and shoot elongation was decreased, whereas the H₂O₂ and malondialdehyde content in wheat seedlings was increased significantly at higher Cd concentration. Protein profiles analyzed by two-dimensional electrophoresis revealed that 46 protein spots showed 1.5-fold change in protein abundance following Cd exposure; 31 protein spots were upregulated and 15 protein spots were down-regulated; 25 of them were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. As expected, most of the up-regulated proteins are involved in heavy metal detoxification and antioxidant processes. Enzyme activity analysis revealed that ascorbate peroxidase and glutathione S-transferase activity was stimulated by Cd treatment. Abundance changes of these proteins, together with their putative functions provide us a new insight that can lead to an integrated understanding of the molecular basis of Cd responses in plants.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

33

Numer

2

Opis fizyczny

p.349-357,fig.,ref.

Twórcy

autor
  • School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
autor
  • Institute of Life Science, Jiangsu University, 301 Xuefu Road Zhenjiang 212013, China
autor
  • School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
autor
  • School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
autor
  • Institute of Life Science, Jiangsu University, 301 Xuefu Road Zhenjiang 212013, China

Bibliografia

  • Ahsan N, Lee DG, Alam I, Kim PJ, Lee JJ, Ahn YO, Kwak SS, Lee IJ, Bahk JD, Kang KY, Renaut J, Komatsu S, Lee BH (2008) Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 17:3561–3576
  • Ali MB, Singh N, Shohael AM, Hahn EJ, Paek KY (2006) Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress. Plant Sci 171:147–154
  • Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM, Hicks LM (2009) Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics 9:2419–2431
  • Baric I, Fumic K, Glenn B, Cuk M, Schulze A, Finkelstein JD, James SJ, Mejaski-Bosnjak V, Pazanin L, Pogribny IP, Rados M, Sarnavka V, Scukanec-Spoljar M, Allen RH, Stabler S, Uzelac L, Vugrek O, Wagner C, Zeisel S, Mudd SH (2004) S-adenosylhomocysteine hydrolase deficiency in a human: a genetic disorder of methionine metabolism. Proc Natl Acad Sci USA 101:4234–4239
  • Cho UH, Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120
  • Chora S, Starita-Geribaldi M, Guigonis JM, Samson M, Roméo M, Bebianno MJ (2009) Effect of cadmium in the clam Ruditapes decussatus assessed by proteomic analysis. Aquat Toxicol 94:300–308
  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719
  • Clemens S, Naumann B, Hippler M (2009) Proteomics of metal mediated protein dynamics in plants—iron and cadmium in the focus. Front Biosci 14:1955–1969
  • Dalton DA, Russell SA, Hanus FJ, Pascoe GA, Evans HJ (1986) Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc Natl Acad Sci USA 83:3811–3815
  • Dietz KJ (2003a) Plant peroxiredoxins. Annu Rev Plant Biol 54:93–107
  • Dietz KJ (2003b) Redox control, redox signaling, and redox homeostasis in plant cells. Int Rev Cytol 228:141–193
  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv.Azad). J Exp Bot 52:1101–1109
  • Ge C, Ding Y, Wang Z, Wan D, Wang Y, Shang Q, Luo S (2009) Responses of wheat seedlings to cadmium, mercury and trichlorobenzene stresses. J Environ Sci (China) 21:806–813
  • Gupta AK, Kaur N (2005) Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci 30:761–776
  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 246:7130–7139
  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast, I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198
  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette MLM, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardl N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765
  • Hung KT, Kao CH (2004) Hydrogen peroxide is necessary for abscisic acid induced senescence of rice leaves. J Plant Physiol 161:1347–1357
  • Jung JH, Hong MJ, Kim DY, Kim JY, Heo HY, Kim TH, Jang CS, Seo YW (2008) Structural and expressional divergence of genes encoding O-methyltransferase in wheat. Genome 51:856–869
  • Kim SI, Kim JY, Kim EA, Kwon KH, Kim KW, Cho K, Lee JH, Nam MH, Yang DC, Yoo JS, Park YM (2003) Proteome analysis of hairy root from Panax ginseng C.A. Meyer using peptide fingerprinting, internal sequencing and expressed sequence tag data. Proteomics 3:2379–2392
  • Konno K, Hirayama C, Yasui H, Nakamura M (1999) Enzymatic activation of oleuropein: a protein crosslinker used as a chemical defense in the privet tree. Proc Natl Acad Sci USA 96:9159–9164
  • Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27:799–810
  • Lee K, Bae DW, Kim SH, Han HJ, Liu X, Park HC, Lim CO, Lee SY, Chung WS (2010) Comparative proteomic analysis of the shortterm responses of rice roots and leaves to cadmium. J Plant Physiol 167:161–168
  • Liu YG, Wang X, Zeng GM, Qu D, Gu JJ, Zhou M, Chai TY (2007) Cadmium-induced oxidative stress and response of the ascorbate—glutathione cycle in Bechmeria nivea (L.) Gaud. Chemosphere 69:99–107
  • Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29:177–187
  • Mathesius U, Keijzers G, Natera SH, Weinman JJ, Djordjevic MA, Rolfe BG (2001) Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting. Proteomics 1:1424–1440
  • Mendoza-Cózatl DG, Moreno-Sánchez R (2005) Cd²⁺ transport and storage in the chloroplast of Euglena gracilis. Biochim Biophys Acta 1706:88–97
  • Minhas D, Grover A (1999) Transcript levels of genes encoding various glycolytic andfermentation enzymes change in response to abiotic stresses. Plant Sci 146:41–51
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880
  • Nakano Y, Asada K (1987) Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol 28:131–140
  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139
  • Opassiri R, Cairns JRK, Akiyama T, Waraaswapati O, Svasti J, Esen A (2003) Characterization of a rice b-glucosidase highly expressed in flower and germinating shoot. Plant Sci 165:627–638
  • Paradiso A, Berardino R, de Pinto M, Sanità di Toppi L, Storelli M, Tommasi F, De Gara L (2008) Increase in ascorbate-glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol 49:362–374
  • Pfannschmidt T (2003) Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci 8:33–41
  • Romero-Puertas M, Rodriguez-serrano M, Corpas F, Gomez M, del Río LA (2004) Cadmium-induced subcellular accumulation of O₂– and H₂O₂ in pea leaves. Plant Cell Environ 27:1122–1134
  • Sanità di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130
  • Semane B, Dupae J, Cuypers A, Noben JP, Tuomainen M, Tervahauta A, Kärenlampi S, Van Belleghem F, Smeets K, Vangronsveld J (2010) Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J Plant Physiol 167:247–254
  • van den Wijngaard PW, Sinnige MP, Roobeek I, Reumer A, Schoonheim PJ, Mol JN, Wang M, De Boer AH (2005) Abscisic acid and 14-3-3 proteins control K channel activity in barley embryonic root. Plant J 41:43–55
  • Wang Y, Yang LM, Xu HB, Li QF, Ma ZQ, Chu CG (2005) Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics 5:4496–4503
  • Wu K, Rooney MF, Ferl RJ (1997) The Arabidopsis 14-3-3 multigene family. Plant Physiol 114:1421–1431
  • Xu HB, Yang LM, Xu P, Tao Y, Ma ZQ (2007) cTrans: generating polypeptide databases from cDNA sequences. Proteomics 7:177–179
  • Zhang ZW, Moon CS, Watanabe T, Shimbo S, Ikeda M (1997) Contents of pollutant and nutrient elements in rice and wheat grown on the neighboring fields. Biol Trace Elem Res 57:39–50
  • Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 121:1169–1178

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-78e974d2-4ddd-41ba-b48c-081e6530c656
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.