PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 2 |

Tytuł artykułu

Exogenous obestatin affects pancreatic enzyme secretion in rat through two opposite mechanisms, direct inhibition and vagally-mediated stimulation

Warianty tytułu

Języki publikacji

PL

Abstrakty

EN
It is suggested that obestatin can stimulate the secretion of pancreatic juice in rats and this effect is abolished by vagotomy. Thus, the aim of the present study was to further elucidate the mechanism by which obestatin controls the exocrine pancreas secretion. Anesthetized male Wistar rats (200 ± 15 g body weight) were administered intravenously (iv) and intraduodenaly (id) every 30 min obestatin in boluses of 30, 100 and 300 nmol ∙ kg−1 body weight and 15 min later pancreatic-biliary juice (PBJ) was collected to determine the PBJ volume, total protein and enzymes activity. Obestatin injections were also done following subdiaphragmatic vagotomy, capsaicin deafferentation and pharmacological blockage of the mucosal cholecystokinin 1 (CCK1) receptor with tarazepide. Dispersed acinar cells were isolated from rat pancreas by collagenase digestion, stimulated with CCK-8 (10−10 M) and incubated with obestatin (10−9–10−6 M) in vitro. It was noted that iv and id obestatin administrations did not affect the PBJ volume but increased protein and trypsin outputs regardless way of administration, and amylase and lipase outputs after id injection. Similarly to vagotomy, the capsaicin and tarazepide pre-treatments abolished the effects of obestatin. In contrast to the in vivo experiment, the treatment of dispersed pancreatic cells with the CCK-8+obestatin combination showed that obestatin decreased the CCK-8-stimulated amylase release from acinar cells in vitro, but obestatin alone did not exert effect on amylase release. So, it is thought that obestatin can stimulate the exocrine pancreas secretion via an indirect vagal mechanism, whilst its direct action on the acinar cells is also possible but with the opposite effects

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

2

Opis fizyczny

p.155-162,fig.,ref.

Twórcy

autor
  • Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-950 Lublin, Poland
autor
  • Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-950 Lublin, Poland
autor
  • Department of Bioorganic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, 920-1154 Kanazawa, Japan
autor
  • Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 602-8566 Kyoto, Japan
autor
  • Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Veterinary Research Centre, Warsaw University of Life Sciences, Nowoursynowska 166, 02-766 Warsaw, Poland
  • Department of Genetic Engineering, Polish Academy of Sciences, The Kielanowski Institute of Animal Physiology and Nutrition, Instytucka 3, 05-110 Jablonna, Poland

Bibliografia

  • Antushevich H., Kapica M., Kuwahara A., Kato I., Krawczyńska A., Herman A.P., Pawlina B., Zabielski R., 2016. The apelin-13 influences the activity of pancreatic enzymes in young rats. J. Anim. Feed Sci. 25, 160–166, https://doi.org/10.22358/jafs/65576/2016
  • Ataka K., InuiA., AsakawaA., Kato I., Fujimiya M., 2008. Obestatin inhibits motor activity in the antrum and duodenum in the fed state of conscious rats. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G1210–G1218, https://doi.org/10.1152/ajpgi.00549.2007
  • Bernfeld P., 1955. Amylases, α and β. In: S.P. Colowick, N.O. Kaplan (Editors). Methods in Enzymology. Vol. 1. Academic Press, New York, NY (USA), pp. 149–158, https://doi.org/10.1016/0076-6879(55)01021-5
  • Bukowczan J., Cieszkowski J., Warzecha Z., Ceranowicz P., KusnierzCabala B., Tomaszewska R., Dembinski A., 2016. Therapeutic effect of obestatin in the course of cerulein-induced acute pancreatitis. Pancreas 45, 700–706, https://doi.org/10.1097/MPA.0000000000000517
  • Bülbül M., Sinen O., Birsen İ., Nimet İzgüt-Uysal V., 2017. Peripheral apelin-13 administration inhibits gastrointestinal motor functions in rats: The role of cholecystokinin through CCK1 receptor-mediated pathway. Neuropeptides 63, 91–97, https://doi.org/10.1016/j.npep.2016.12.001
  • Campos C.A., Wright J.S., Czaja K., Ritter R.C., 2012. CCK-induced reduction of food intake and hindbrain MAPK signaling are mediated by NMDA receptor activation. Endocrinology 153, 2633–2646, https://doi.org/10.1210/en.2012-1025
  • Ceranowicz P., Warzecha Z., Dembinski A., 2015. Peptidyl hormones of endocrine cells origin in the gut – their discovery and physiological relevance. J. Physiol. Pharmacol. 66, 11–27
  • Chandra R., Liddle R.A., 2009. Neural and hormonal regulation of pancreatic secretion. Curr. Opin. Gastroenterol. 25, 441–446, https://doi.org/10.1097/MOG.0b013e32832e9c41
  • Date Y., Kojima M., Hosoda H., Sawaguchi A., Mondal M.S., Suganuma T., Matsukura S., Kangawa K., Nakazato M., 2000. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141, 4255−4261, https://doi.org/10.1210/endo.141.11.7757
  • Egido E.M., Hernández R., Marco J., Silvestre R.A., 2009. Effect of obestatin on insulin, glucagon and somatostatin secretion in the perfused rat pancreas. Regul. Pept. 152, 61–66, https://doi.org/10.1016/j.regpep.2008.08.003
  • Furnes W.M., Stenström B., Tømmerås K., Skoglund T., Dickson S.L., Kulseng B., Zhao C.-M., Chen D., 2008. Feeding behavior in rats subjected to gastrectomy or gastric bypass surgery. Eur. Surg. Res.40, 279–288, https://doi.org/10.1159/000114966
  • Furukawa I., Kurooka S., Arisue K., Kohda K., Hayashi C., 1982. Assays of serum lipase by the “BALB-DTNB method” mechanised for use with discrete and continuous-flow analysers. Clin. Chem. 28, 110–113
  • Granata R., Settanni F., Gallo D. et al., 2008. Obestatin promotes survival of pancreatic β-cell and human islets and induces expression of genes involved in the regulation of β-cell mass and function. Diabetes 57, 967–979, https://doi.org/10.2337/db07-1104
  • Green B.D., Irwin N., Flatt P.R., 2007. Direct and indirect effects of obestatin peptides on food intake and the regulation of glucose homeostasis and insulin secretion in mice. Peptides 28, 981−987, https://doi.org/10.1016/j.peptides.2007.02.003
  • Grönberg M., Amini R.-M., Stridsberg M., Janson E.T., Saras J., 2010. Neuroendocrine markers are expressed in human mammary glands. Regul. Pept. 160, 68–74, https://doi.org/10.1016/j.regpep.2009.12.011
  • Jankowska A., Laubitz D., Guillaume D., Kotunia A., Kapica M., Zabielski R., 2007. The effect of pentaghrelin on amylase release from the rat and porcine dispersed pancreatic acinar cells in vitro. Livest. Sci. 108, 65–67, https://doi.org/10.1016/j.livsci.2007.01.034
  • Kapica M., Laubitz D., Puzio I., Jankowska A., Zabielski R., 2006. The ghrelin pentapeptide inhibits the secretion of pancreatic juice in rats. J. Physiol. Pharmacol. 54, 691–700
  • Kapica M., Puzio I., Kato I., Kuwahara A., Zabielski R., 2008. Role of feed-regulating peptides on pancreatic exocrine secretion. J. Physiol. Pharmacol. 59, 145–159
  • Kapica M., Zabielska M., Puzio I., Jankowska A., Kato I., Kuwahara A., Zabielski R., 2007. Obestatin stimulates the secretion of pancreatic juice enzymes through a vagal pathway in anaesthetized rats – preliminary results. J. Physiol. Pharmacol. 58, 123–130
  • Konturek S.J., Zabielski R., Konturek J.W., Czarnecki J., 2003. Neuroendocrinology of the pancreas; role of brain–gut axis in pancreatic secretion. Eur. J. Pharmacol. 481, 1–14, https://doi.org/10.1016/j.ejphar.2003.08.042
  • Korczynski W., Ceregrzyn M., Matyjek R., Kato I., Kuwahara A., Wolinski J., Zabielski R., 2006. Central and local (enteric) action of orexins. J. Physiol. Pharmacol. 57, 17–42
  • Li Y., Owyang C., 1996. Pancreatic secretion evoked by cholecystokinin and non-cholecystokinin-dependent duodenal stimuli via vagal afferent fibres in the rat. J. Physiol. 494, 773–782, https://doi.org/10.1113/jphysiol.1996.sp021531
  • Matyjek R., Kapica M., Puzio I.,Bąbelewska M., Zabielski R., 2004. The effect of fundectomy on pancreatic secretion in anaesthetized rats. J. Physiol.Pharmacol. 55, Suppl. 2, 69–75
  • Moretti E., Vindigni C., Tripodi S.A., Mazzi L., Nuti R., Figura N., CollodelG., 2014. Immunolocalisation of ghrelin and obestatin in human testis, seminal vesicles, prostate and spermatozoa. Andrologia 46, 979–985, https://doi.org/10.1111/and.12183
  • Nawrot-Porąbka K., Jaworek J., Leja-SzpakA., Szklarczyk J., Macko M., Kot M., Mitis-Musioł M., Konturek S.J., Pawlik W.W., 2007. The effect of luminal ghrelin on pancreatic enzyme secretion in the rat. Regul. Pept. 143, 56–63, https://doi.org/10.1016/j.regpep.2007.03.001
  • Peters J.H., Gallaher Z.R., Ryu V., Czaja K., 2013. Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy. J. Comp. Neurol. 521, 3584–3599, https://doi.org/10.1002/cne.23374
  • Qader S.S., Håkanson R., Rehfeld J.F., Lundquist I., Salehi A., 2008. Proghrelin-derived peptides influence the secretion of insulin, glucagon, pancreatic polypeptide and somatostatin: A study on isolated islets from mouse and rat pancreas. Regul. Pept. 146, 230–237, https://doi.org/10.1016/j.regpep.2007.09.017
  • Rao R.K., 1991. Biologically active peptides in the gastrointestinal lumen. Life Sci. 48, 1685–1704, https://doi.org/10.1016/0024-3205(91)90205-P
  • Ryu V., Gallaher Z., Czaja K., 2010. Plasticity of no dose ganglion neurons after capsaicin- and vagotomy-induced nerve damage in adult rats. Neuroscience 167, 1227–1238, https://doi.org/10.1016/j.neuroscience.2010.02.049
  • Samson W.K., White M.M., Price C., Ferguson A.V., 2007. Obestatin acts in brain to inhibit thirst. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R637–R643, https://doi.org/10.1152/ajpregu.00395.2006
  • Sobhani I., Bado A., Vissuzaine C. et al., 2000. Leptin secretion and leptin receptor in the human stomach. Gut 47, 178–183, http://doi.org/10.1136/gut.47.2.178
  • Wright J., Campos C., Herzog T., Covasa M., Czaja K., Ritter R.C., 2011. Reduction of food intake by cholecystokinin requires activation of hindbrain NMDA-type glutamate receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R448–R455, http://doi.org/10.1152/ajpregu.00026.2011
  • Zabielski R., Leśniewska V., Borlak J., Gregory P.C., Kiela P., Pierzynowski S.G., Barej W., 1998. Effects of intraduodenal administration of tarazepide on pancreatic secretion and duodenal EMG in neonatal calves. Regul. Pept. 78, 113–123, https://doi.org/10.1016/S0167-0115(98)00139-6
  • Zhang J.V., Ren P.-G., Avsian-Kretchmer O., Luo C.-W., Rauch R., Klein C., Hsueh A.J.W., 2005. Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science 310, 996–999, https://doi.org/10.1126/science.1117255
  • Zhao C.-M., Furnes M.W., Stenström B., Kulseng B., Chen D., 2008. Characterization of obestatin- and ghrelin-producing cells in the gastrointestinal tract and pancreas of rats: an immunohistochemical and electron-microscopic study. Cell Tissue Res. 331, 575–587, https://doi.org/10.1007/s00441-007-0514-3

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-786e26c0-3e97-49d8-af0b-6c7c6e7d5c20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.