PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2014 | 73 | 1 |

Tytuł artykułu

Human adult dental pulp CD117/c-kit-positive networks of stromal cells

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Dental pulp tissue was collected from 6 healthy adult patients, prior to prosthetic treatments, in order to evaluate the in situ phenotype of dental pulp stromal cells and compare with that of dental pulp stem cells. A CD34–/CD44+/CD105–/ CD117+/CD146–/nestin– phenotype of stromal cells in the dental pulp core was found. Cells with a similar phenotype, but CD44–, were found in the cell rich zone. Dental pulp stromal networks (DPSNs) were found CD117+/CD44+ in the pulp core, but CD117+/CD44– in the cell rich zone. The c-kit-positive DPSNs were contacting pulp nerves and were, in this regard only, comparable to interstitial Cajal cells. Stromal signalling in dental pulp needs further evaluation, in normal tissue as well as a possible cause of persisting pain after endodontic treatments (Folia Morphol 2014; 73, 1: 68–72)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

73

Numer

1

Opis fizyczny

p.68-72,fig.,ref.

Twórcy

autor
  • Division of Anatomy, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
  • MEDCENTER – Centre of Excellence in Laboratory Medicine and Pathology, Bucharest, Romania
autor
  • Anatomy Section, Department of Biomedical Sciences, University of Catania, Catania, Italy
autor
  • Department of Anatomy, “Gr.T.Popa” University of Medicine and Pharmacy, Iasi, Romania
autor
  • Department of Anatomy, “Gr.T.Popa” University of Medicine and Pharmacy, Iasi, Romania
  • Division of Embryology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania

Bibliografia

  • 1. Arora V, Arora P, Munshi AK (2009) Banking stem cells from human exfoliated deciduous teeth (SHED): saving for the future. J Clin Pediatr Dent, 33: 289–294.
  • 2. Balto K (2010) How common is tooth pain after root canal treatment? Evid Based Dent, 11: 114.
  • 3. Brar GS, Toor RS (2012) Dental stem cells: dentinogenic, osteogenic, and neurogenic differentiation and its clinical cell based therapies. Indian J Dent Res, 23: 393–397.
  • 4. Chen H, Redelman D, Ro S, Ward SM, Ordog T, Sanders KM (2007) Selective labeling and isolation of functional classes of interstitial cells of Cajal of human and murine small intestine. Am J Physiol Cell Physiol, 292: C497–C507.
  • 5. Chen KL, Huang YY, Lung J, Yeh YY, Yuan K (2013) CD44 is involved in mineralization of dental pulp cells. J Endod, 39: 351–356.
  • 6. d’Aquino R, De Rosa A, Laino G, Caruso F, Guida L, Rullo R, Checchi V, laino L, Tirino V, Papaccio G (2009) Human dental pulp stem cells: from biology to clinical applications. J Exp Zool B Mol Dev Evol, 312B: 408–415.
  • 7. da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci, 119: 2204–2213.
  • 8. Gherghiceanu M, Hinescu ME, Popescu LM (2009) Myocardial interstitial Cajal-like cells (ICLC) in caveolin-1 KO mice. J Cell Mol Med, 13: 202–206.
  • 9. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA, 97: 13625–13630.
  • 10. Hinescu ME, Gherghiceanu M, Mandache E, Ciontea SM, Popescu LM (2006) Interstitial Cajal-like cells (ICLC) in atrial myocardium: ultrastructural and immunohistochemical characterization. J Cell Mol Medicine 10:243–57.
  • 11. Hinescu ME, Popescu LM (2005) Interstitial Cajal-like cells (ICLC) in human atrial myocardium. Journal of Cellular and Molecular Med, 9: 972–975.
  • 12. Huang GT, Sonoyama W, Chen J, Park SH (2006) In vitro characterization of human dental pulp cells: various isolation methods and culturing environments. Cell Tissue Res, 324: 225–236.
  • 13. Huang GT, Sonoyama W, Liu Y, Liu H, Wang S, Shi S (2008) The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J Endod, 34: 645–651.
  • 14. Huizinga JD, Zarate N, Farrugia G (2009) Physiology, injury, and recovery of interstitial cells of Cajal: basic and clinical science. Gastroenterology, 137: 1548–1556.
  • 15. Kawashima N (2012) Characterisation of dental pulp stem cells: a new horizon for tissue regeneration? Arch Oral Biol, 57: 1439–1458.
  • 16. Laino G, d’Aquino R, Graziano A, Lanza V, Carinci F, Naro F, Pirozzi G, Papaccio G (2005) A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res, 20: 1394–1402.
  • 17. Lizier NF, Kerkis A, Gomes CM, Hebling J, Oliveira CF, Caplan AI, Kerkis I (2012) Scaling-up of dental pulp stem cells isolated from multiple niches. PLoS One, 7: e39885.
  • 18. Marchionni C, Bonsi L, Alviano F, Lanzoni G, Di Tullio A, Costa R, Montanari M, Tazzari PL, Ricci F, Pasquinelli G, Orrico C, Grossi A, Prati C, Bagnara GP (2009) Angiogenic potential of human dental pulp stromal (stem) cells. Int J Immunopathol Pharmacol, 22: 699–706.
  • 19. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA, 100: 5807–5812.
  • 20. Nishino Y, Yamada Y, Ebisawa K, Nakamura S, Okabe K, Umemura E, Hara K, Ueda M (2011) Stem cells from human exfoliated deciduous teeth (SHED) enhance wound healing and the possibility of novel cell therapy. Cytotherapy, 13: 598–605.
  • 21. Nixdorf DR, Moana-Filho EJ, Law AS, McGuire LA, Hodges JS, John MT (2010) Frequency of persistent tooth pain after root canal therapy: a systematic review and meta-analysis. J Endod, 36: 224–230.
  • 22. Popescu LM, Faussone-Pellegrini MS (2010) TELOCYTES: a case of serendipity: the winding way from Interstitial Cells of Cajal (ICC), via Interstitial Cajal-Like Cells (ICLC) to TELOCYTES. J Cell Mol Med, 14: 729–740.
  • 23. Ruparel NB, de Almeida JF, Henry MA, Diogenes A (2013) Characterization of a stem cell of apical papilla cell line: effect of passage on cellular phenotype. J Endod, 39: 357–363.
  • 24. Rusu MC, Nicolescu MI, Jianu AM, Lighezan R, Manoiu VS, Paduraru D (2012) Esophageal telocytes and hybrid morphologies. Cell Biol Int, 36: 1079–1088.
  • 25. Rusu MC, Pop F, Hostiuc S, Curca GC, Streinu-Cercel A (2011) Extrahepatic and intrahepatic human portal interstitial Cajal cells. Anat Rec (Hoboken), 294: 1382–1392.
  • 26. Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res, 18: 696–704.
  • 27. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod, 34: 166–171.
  • 28. Suciu L, Popescu LM, Regalia T, Ardelean A, Manole CG (2009) Epicardium: interstitial Cajal-like cells (ICLC) highlighted by immunofluorescence. J Cell Mol Med, 13: 771–777.
  • 29. Tirino V, Paino F, De Rosa A, Papaccio G (2012) Identification, isolation, characterization, and banking of humadental pulp stem cells. Methods Mol Biol, 879: 443–463.
  • 30. Yu B, Han J, He YT, Guo S, Li SF, Mei F (2009) Immunohistochemical study of CD44 immunopositive cells in the muscular layers of the gastrointestinal tract in adult guinea pigs and mice. Acta Histochemica, 111: 382–390.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7838ce84-eb19-4fad-83a7-e1772e5e6985
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.