PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 4 |

Tytuł artykułu

Sodium alginate/ultrasonic-assisted biodegradation of oestrogens in soil

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this study was to assess the effect of sodium alginate-immobilized bacteria and ultrasonic assistance on the biodegradation of oestrogens in soil. The studied oestrogens were oestrone (E1), oestradiol (E2), oestriol (E3), 17α-ethinylestradiol (EE2), and bisphenol-A (BPA). A central composite design was developed to determine the optimal conditions of the three variables (ultrasound time, sodium alginate concentration, and amount of sodium alginate beads) for the removal of oestrogens. Moreover, the experiment utilized a quantitative structure-biodegradation relationship (QSBR) to analyze the effect of the estrogenic physicochemical properties on the enhancement of the biological degradation mechanism. The results indicated that the optimal conditions are an ultrasound time of three min, a sodium alginate concentration of 3%, and 4 g of sodium alginate beads. These conditions resulted in removal rates of 100%, 100%, 93%, 96.47, and 51.87% for E1, E2, EE2, BPA, and E3, respectively, after seven days. These rates were 1.7, 1.4, 1.3, 1.2, and 2.1 times the microbial degradation rate of the suspended state, respectively. Based on a Pearson correlation analysis, the oestrogen molecule polar surface area (PSA) and hydrophobicity (represented by logKow) were significantly related to the effect of biodegradation. An analysis of the OSBR model (with the oestrogen biodegradation rates as a dependent variable and PSA and logKow as independent variables) indicated the following: PSA negatively correlated and logKow positively correlated with oestrogen removal, and these effects were synergistic. Therefore, sodium alginate/ultrasound assistance can significantly improve the biodegradation rates of oestrogens in soil, while simultaneously adjusting other environmental conditions would influence and control the biodegradation processes of oestrogens.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

4

Opis fizyczny

p.1535-1542,fig.,ref.

Twórcy

autor
  • Resource and Environment Institute, North China Electric Power University, Beijing 102206, China
  • The State Key Laboratory of Regional Optimization of Energy Systems, North China Electric Power University, Beijing 102206, China
autor
  • State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
autor
  • Resource and Environment Institute, North China Electric Power University, Beijing 102206, China
  • The State Key Laboratory of Regional Optimization of Energy Systems, North China Electric Power University, Beijing 102206, China
autor
  • Resource and Environment Institute, North China Electric Power University, Beijing 102206, China
  • The State Key Laboratory of Regional Optimization of Energy Systems, North China Electric Power University, Beijing 102206, China

Bibliografia

  • 1. GIOIOSA L., FISSORE E., GHIRARDELLI G., PARMIGIANI S., PALANZA P. Developmental exposure to lowdose estrogenic endocrine disruptors alters sex differences in exploration and emotional responses in mice. Horm Behav. 52, (3), 307, 2007.
  • 2. PURDOM C. E., HARDIMAN P. A., BYE V. V. J., ENO N. C., TYLER C. R., SUMPTER J. P. Estrogenic effects of effluents from sewage treatment works. Chem and Ecol. 8, (4), 275, 1994.
  • 3. CHANG H. S., CHOO K. H., LEE B., CHOI S.J. The methods of identification, analysis and removal of endocrine disrupting compounds (EDCs) in water. J Hazard Mater. 172, (1), 1, 2009.
  • 4. CLOUZOT L., DOUMENQ P., ROCHE N., MARROTA B. Kinetic parameters for 17α-ethinylestradiol removal by nitrifying activated sludge developed in a membrane bioreactor. Bioresource Technol. 101, (16), 6425, 2010.
  • 5. LESLEY J. M., CLINTON C. Review of evidence: Are endocrine-disrupting chemicals in the aquatic environment impacting fish populations? Sci. Total Environ. 343, (1-3), 1, 2005.
  • 6. KETATA I., DENIER X., HAMZA CHAFFAI A., MINIER C. Endocrine-related reproductive effects in mollusks. Comp Biochem Physiol C Toxicol Pharmacol. 147, (3), 261, 2008.
  • 7. GYLLENHAMMAR I., HOLM L., EKLUND R., BERG C. Reproductive toxicity in Xenopus tropicality after developmental exposure to environmental concentrations of ethynylestradiol. Aquat Toxicol. 91, (2), 171, 2009.
  • 8. BRUNSTRÖM B., AXELSSON J., MATTSSON A., HALLDIN K. Effects of estrogens on sex differentiation in Japanese quail and chicken. Gen Comp Endocrinol. 163, (1-2), 97, 2009.
  • 9. LATENDRESSE J. R., BUCCI T. J., OLSON G., MELLICK P., WEIS C. C., THORN B., NEWBOLD R. R., DELCLOS K. B. Genistein and ethinyl estradiol dietary exposure in multigenerational and chronic studies induce similar proliferative lesions in mammary gland of male Sprague-Dawley rats. Reprod Toxicol. 28, (3), 342, 2009.
  • 10. KOPONEN P.S., KUKKONEN J. V. K. Effects of bisphenol A and artificial UVB radiation on the early development of Rana temporaria. J. Toxicol. Environ. Health. 65, (13), 947, 2002.
  • 11. SOGAWA N., ONODERA K., SOGAWA C.A., MUKUBO Y., FUKOKA H., ODA N., FURUTA H. Bisphenol A enhances cadmium toxicity through estrogen receptor. Methods Find Exp Clin Pharmacol. 23, (7), 6621, 2001.
  • 12. SARKAR S., ALI S., REHMANN L., NAKHLA G., MADHUMITA B. R. Degradation of estrone in water and wastewater by various advanced oxidation processes. J. Hazard. Mater., 278, (C), 16, 2014.
  • 13. SHI J.H., CHEN Q.C., LIU X.W., ZHAN X.M., LI J., LI Z.B. Sludge/water partition and biochemical transformation of estrone and 17β-estradiol in a pilot-scale step-feed anoxic/oxic wastewater treatment system. Biochem. Eng. J, 74, 107, 2013.
  • 14. GONZALEZ S., PETROVIC M., BARCELO D. Removal of a broad range of surfactants from municipal wastewater-comparison between membrane bioreactor and conventional activated sludge treatment. Chemosphere. 67, (2), 335, 2007.
  • 15. CLARA M., STRENN B., GANS O., MARTINEZ E., KREUZINGER N. AND KROISS H. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res. 39, (19), 4797, 2005.
  • 16. ABARGUESA M.R., FERRERB J., BOUZASA A., SECO A. Removal and fate of endocrine disruptor chemicals under lab-scale postreatment stage. Removal assessment using light, oxygen and microalgae. Bioresource Technol. 149, (C), 142, 2013.
  • 17. LUCAS S. D., JONES D. L. Biodegradation of estrone and 17β-estradiol in grassland soils amended with animal wastes. Soil Biol. Biochem. 38, (9), 2803, 2006.
  • 18. SUN K., RO K., GUO M.X., NOVAK J., MASHAYEKHI H., XING B.S. Sorption of bisphenol A, 17α-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Bioresource Technol. 102, (10), 5757, 2011.
  • 19. VaN EMMERIK T., ANGOVE M. J., JOHNSON B. B., WELLS J. D., FERNANDES M. B. Sorption of 17β-estradiol onto selected soil minerals. J Colloid Interface Sci. 266, (1), 33, 2003.
  • 20. LIU J.L., Ph. D. thesis. Study on the adsorption behaviors and biodegradation of estrogen chemicals in soil system. North China electric power university, 2012 [In Chinese].
  • 21. FU S., THACKER A., SPERGER D. M., BONI R. L., BUCKNER I. S., VELANKAR S., MUNSON E. J., BLOCK L. H. Relevance of Rheological Properties of Sodium Alginate in Solution to Calcium Alginate Gel Properties. AAPS. Pharm. Sci. Tech., 12, (2), 453, 2011.
  • 22. KAKITA H., KAMISHIMA H. Some properties of alginate gels derived from algal sodium alginate. J. Appl. Phycol., 20, (5), 93, 2008.
  • 23. PALUDO N., ALVES J.S., ALTMANN C., AYUB M.A., FERNANDEZ-LAFUENTE R., RODRIGUES R.C. The combined use of ultrasound and molecular sieves improves the synthesis of ethyl butyrate catalyzed by immobilized Thermomyces lanuginosus lipase. Ultrason. Sonochem., 22, 89, 2015.
  • 24. JEONG J. J., KIM J. H., KIM C., HWANG I., LEE K. 3- and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2, 3-dioxygenase. Microbiol. 149, (11), 3265, 2003.
  • 25. ZAIN N.A.M., SUHAIMI M.S., IDRIS A. Hydrolysis of liquid pineapple waste by invertase immobilized in PVA-alginate matrix. Biochem. Eng. J., 50, (3), 83, 2010.
  • 26. CHEN C.Y., CHEN S.C., FINGAS M., KAO C.M. Biodegradation of propionitrile by Klebsiella oxytoca immobilized in alginate and cellulose triacetate gel. J. Hazard. Mater., 177, (1/2/3), 856, 2010.
  • 27. RICHETTI A., MUNARETTO C.B., LERIN L.A., BATISTELLA L., VLADIMIR OLIVEIRA J., DALLAGO R.M., ASTOLFI V., LUCCIO M.D., MAZUTTI M.A., DE OLIVEIRA D., TREICHEL H. Immobilization of inulinase from Kluyveromyces marxianus NRRLY-7571 using modified sodium alginate beads. Bioproc. Biosyst. Eng., 35, (3), 383, 2012.
  • 28. WIESEL I., WUBKER S. M., REHM H. J. Degradation of polycyclic aromatic hydrocarbons by an immobilized mixed bacterial culture. Appl. Microbiol. Biotechnol., 39, (1), 110, 1993.
  • 29. GAO S.P., GILLIAN D. L., ASHOKKUMAR M., YACINE HEMAR Y. Inactivation of microorganisms by low-frequency high-power ultrasound: 1. Effect of growth phase and capsule properties of the bacteria. Ultrason. Sonochem., 21, (1), 446, 2014.
  • 30. CHISTI Y. Sonobioreactors: using ultrasound for enhanced microbial productivity. Trends. Biotechnol., 21, (2), 89, 2003.
  • 31. LAI K., SCRIMSHAW M., LESTER J. Biotransformation and bioconcentration of steroid estrogens by Chlorella vulgaris [J]. Appl. Environ. Microb., 68, (2), 859, 2002.
  • 32. PUMA G.L., PUDDU V., TSANG H.K., GORA A., TOEPFER B. Photocatalytic oxidation of multicomponent mixtures of estrogens (estrone (E1),17β-estradiol (E2), 17αethynylestradiol (EE2) and estriol (E3)) under UVA and UVC radiation: Photon absorption, quantum yields and rate constants independent of photon absorption. Appl. Catal. BE-nviron., 99, 388, 2010.
  • 33. REN H.Y., JI S.L., AHMAD N., WANG D., CUI C.W. Degradation characteristics and metabolic pathway of 17α-ethynylestradiol by Sphingobacterium sp. JCR5. Chemosphere, 66, (2), 340, 2007.
  • 34. BILA D., MONTALVAO A.F., AZEVEDO D.A., DEZOTTI M. Estrogenic activity removal of 17β-estradiol by ozonation and identification of by-products. Chemosphere, 69, (5), 736, 2007.
  • 35. HORI K., HIRAMATSU N., NANNBU M., KANIE K., OKOCHI M., HONDA H., WATANABE H. Drastic change in cell surface hydrophobicity of a new bacterial strain, Pseudomonas sp. TIS1-127, induced by growth temperature and its effects on the toluene-conversion rate. J. Bio. SCI. Bioeng., 107, (3), 250, 2009.
  • 36. CHANG W.N., LIU C.W., LIU H.S. Hydrophobic cell surface and bioflocculation behavior of Rhodococcus erythropolis. Process. Biochem., 44, (9), 955, 2009.
  • 37. OBUEKWE C. O., AL-JADI Z. K., AL-SALEH E. S. Hydrocarbon degradation in relation to cell-surface hydrophobicity among bacterial hydrocarbon degraders from petroleum-contaminated Kuwait desert environment. Int. Biodeter. Biodegr., 63, (3), 273, 2009.
  • 38. CHAKRABORTY S., MUKHERJI S., MUKHERJI S. Surface hydrophobicity of petroleum hydrocarbon degrading Burkholderia strains and their interactions with NAPLs and surfaces. Colloid. Surface. B., 78, (1), 101, 2010.
  • 39. TRONDE A., NORDEN B., JEPPSSON A.B., BRUNMARK P., NILSSON E., LENNERNAS H., BENGTSSON U.H. Drug absorption from the isolated perfused rat lung: correlations with drug physicochemical properties and epithelial permeability. J. Drug. Target., 11, (1), 61, 2003.
  • 40. MAGHRABY G.M.M., WILLIAMS A.C., BARRY B.W. Drug interaction and location in liposomes: correlation with polar surface areas. Int. J. Pharmaceut., 292,(1-2), 179, 2005.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-782ea791-36d3-41eb-b5d3-f88bdee2d5c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.