PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 3 |

Tytuł artykułu

Molecular cloning and characterisation of a cDNA encoding a putative alkaline alpha-galactosidase from grapevine (Vitis vinifera L.) that is differentially expressed under osmotic stress

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The expression of a gene originally identified by means of a salt-stress-associated partial cDNA showing a genotype-dependent response, was studied upon exposure to salt and drought stress and during seed development of grapevines. The complete open reading frame has been cloned and the corresponding untranslated regions have been characterized by 5'- and 3'-RACE leading to a refinement and correction of the predicted gene model in the recent 12 × Vitis genome assembly. The open reading frame of the single copy gene designated Vv-α-gal/SIP encodes for a polypeptide of 774 amino acids with a calculated molecular mass of 84.9 kDa. Protein sequence comparisons suggest that the gene belongs to a growing family of plant-specific alkaline α-galactosidases. 5'-RACE identified a not yet documented transcript species derived from the same gene locus, which does not lead to the formation of a full-length transcript. The ‘‘aberrant’’ transcript harbours an alternative 5'-UTR and originates from an internal transcriptional start site 1.4 kb downstream of the predominant transcriptional start site. Levels of transcripts containing the different 5'-UTRs were compared under salt stress conditions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

3

Opis fizyczny

p.891-903,fig.,ref.

Twórcy

autor
  • Centre de Biotechnologie de Borj cedria, Laboratorie de Physiologie Moleculaire des Plantes, B.P.901, 2050 Hammam-Lif, Tunisia
  • RLP-Agroscience GmbH, Alplanta-Institute for Plant Research, Breitenweg 71, 67435 Neustadt and der Weinstrasse, Germany
autor
  • Centre de Biotechnologie de Borj cedria, Laboratorie de Physiologie Moleculaire des Plantes, B.P.901, 2050 Hammam-Lif, Tunisia
  • RLP-Agroscience GmbH, Alplanta-Institute for Plant Research, Breitenweg 71, 67435 Neustadt and der Weinstrasse, Germany
autor
  • RLP-Agroscience GmbH, Alplanta-Institute for Plant Research, Breitenweg 71, 67435 Neustadt and der Weinstrasse, Germany
autor
  • Centre de Biotechnologie de Borj cedria, Laboratorie de Physiologie Moleculaire des Plantes, B.P.901, 2050 Hammam-Lif,
autor
  • Centre de Biotechnologie de Borj cedria, Laboratorie de Physiologie Moleculaire des Plantes, B.P.901, 2050 Hammam-Lif,
autor
  • RLP-Agroscience GmbH, Alplanta-Institute for Plant Research, Breitenweg 71, 67435 Neustadt and der Weinstrasse, Germany

Bibliografia

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
  • Blöchl A, Peterbauer T, Hofmann J, Richter A (2008) Enzymatic breakdown of raffinose oligosaccharides in pea seeds. Planta 228(1):99–110
  • Carmi N, Zhang G, Petreikov M, Gao Z, Eyal Y, Granot D, Schaffer AA (2003) Cloning and functional expression of alkaline α-galactosidase from melon fruit: similarity to plant SIP proteins uncovers a novel family of plant glycosyl hydrolases. Plant J 33:97–106
  • Chen WH, Guanting Lv, Changqing Z, Songnian H (2007) Systematic analysis of alternative first exons in plant genomes. BMC Plant Biol 7:55. doi:10.1186/1471-2229-7-55
  • Childs KL, Hamilton JP, Zhu W, Ly E, Cheung F, Wu H, Rabinowicz PD, Town CD, Buell CR, Chan AP (2007) The TIGR plant transcript assemblies database. Nucleic Acids Res 35(database issue):D846–D851
  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995
  • Daldoul S, Chenenanoui S, Mliki A, HöferM(2009) Improvement of an RNA purification method for grapevine (Vitis vinifera L.) suitable for cDNA library construction. Acta Physiol Plant 31:871–875
  • Daldoul S, Guillaumie S, Reustle GM, Krczal G, Ghorbel A, Delrot S, Mliki A, Höfer M (2010) Isolation and expression analysis of salt induced genes from contrasting grapevine (Vitis vinifera L.) cultivars. Plant Sci 179:489–498
  • Fisarakis I, Chartzoulakis K, Stavrakas D (2001) Response of Sultana vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agric Water Manage 51:13–27
  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36(database issue):D154–D158
  • Hamman RA Jr, Dami IE, Walsh TM, Stushnoff C (1996) Seasonal carbohydrate changes and cold hardiness of Chardonnay and Riesling grapevines. Am J Enol Vitic 47(1):31–36
  • Hamrouni L, Ben Abdallah F, Abdelly C, Ghorbel A (2002) Evaluation de la tolérance au sel chez les vignes tunisiennes cultivées in vitro. In: Proceedings du XXVIIème Congrès Mondial de la Vigne et du Vin., Bratislava-Slovénie., 24–28 Juin, pp 102–112
  • Hanana M, Deluc L, Fouquet R, Daldoul S, Léon C, Barrieu F, Ghorbel A, Mliki A, Hamdi S (2008) Identification and characterization of ‘‘rd22’’ dehydration responsive gene in grapevine (Vitis vinifera L.). C R Biol 331 8:569–578
  • Hara M, Tokunaga K, Kuboi T (2008) Isolation of a droughtresponsive alkaline α-galactosidase gene from New Zealand spinach. Plant Biotechnol 25:497–501
  • Hayden CA, Jorgensen RA (2007) Identification of novel conserved peptide uORF homology groups in Arabidopsis and rice reveals ancient eukaryotic origin of select groups and preferential association with transcription factor-encoding genes. BMC Biol 5:32. doi:10.1186/1741-7007-5-32
  • Hernández JA, Almansa M (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Planta 115:251–257
  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition, 2nd edn, vol 22. CAB Technical Communication, Wallingford, pp 431–432
  • Jaillon O et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467
  • Jellouli N, Ben Jouira H, Skouri H, Gargouri A, Ghorbel A, Mliki A (2008) Proteomic analysis of Tunisian grapevine cultivar Razegui under salt stress. J Plant Physiol 165:471–481
  • Joshi CP (1987) Putative polyadenylation signals in nuclear genes of higher plants: a compilation and analysis. Nucleic Acids Res 15:9627–9640
  • Lee RH, Lin MC, Chen SCG (2004) A novel alkaline alphagalactosidase gene is involved in rice leaf senescence. Plant Mol Biol 55:281–295
  • Lopez CG, Banowetz GM, Peterson CJ, Kronstad WE (2003) Dehydrin expression and drought tolerance in seven wheat cultivars. Crop Sci 43:577–582
  • Molina C, Erich G (2005) Genome wide analysis of Arabidopsis core promoters. BMC Genomics 6:25
  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 2:239–250
  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681
  • Mzid R, Marchive C, Blancard D, Deluc L, Barrieu F, Corio-costet MF, Drira N, Hamdi S, Lauvergeat V (2007) Overexpression of VvWRKY2 in tobacco enhances broad resistance to necrotrophic fungal pathogens. Physiol Plant 131(3):434–447
  • Nyikó T, Sonkoly B, Mérai Z, Benkovics A, Silhavy D (2009) Plant upstream ORFs can trigger nonsense-mediated mRNA decay in a size-dependent manner. Plant Mol Biol 71:367–378
  • Parsley K, Hibberd J (2006) The Arabidopsis PPDK gene is transcribed from two promoters to produce differentially expressed transcripts responsible for cytosolic and plastidic proteins. Plant Mol Biol 62:339–349
  • Peters S, Egert A, Stieger B, Keller F (2010) Functional identification of Arabidopsis ATSIP2 (At3g57520) as an alkaline α-galactosidase with a substrate specificity for raffinose and an apparent sink-specific expression pattern. Plant Cell Physiol. doi: 10.1093/pcp/pcq127
  • Rahmani F, Hummel M, Schuurmans J, Wiese-Klinkenberg A, Smeekens S, Hanson J (2009) Sucrose control of translation mediated by an upstream open reading frame encoded peptide. Plant Physiol 150:1356–1367
  • Scholander PF, Hammel HT, Hemmingsen EA, Bradstrees ED (1964) Hydrostatic pressure and osmotic potential in leaves of Mangroves and some other plants. Proc Natl Acad Sci 52(1):119–125
  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417
  • Singh K, Foley RC, Onate-Sanchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436
  • Talame V, Neslihan ZO, Bohnert HJ, Tuberosa R (2007) Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis. J Exp Bot 58(2):229–240
  • Thomas MR, Matsumoto S, Cain P, Scott NS (1993) Repetitive DNA of grapevine: classes present and sequences suitable for cultivar identification. Theor Appl Genet 86:173–180
  • Toumi I, Gargouri M, Nouairi I, Moschou PN, Salem-Fnayou AB, Mliki A, Zarrouk M, Ghorbel A (2008) Water stress induced changes in the leaf lipid composition of four grapevine genotypes with different drought tolerance. Biol Plantarum 52(1):161–164
  • Walker RR, Torokfalvy E, Scott NS, Kriedemann PE (1981) An analysis of photosynthetic response to salt treatment in Vitis vinifera. Aust J Plant Physiol 8:359–374
  • Xiao H, Nassuth A (2006) Stress- and development-induced expression of spliced and unspliced transcripts from two highly similar dehydrin 1 genes in V. riparia and V. vinifera. Plant Cell Rep 25(9):968–977
  • Yamamoto YY, Hiroyuki I, Minami M, Junichi O, Tetsuya S, Masakazu S, Motoaki S, Kazuo S, Tomoko A (2007) Identification of plant promoter constituents by analysis of local distribution of short sequences. BMC Genomics 8:67
  • Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, Wang T, Ling Y, Su Z (2010) PMRD: plant microRNA database. Nucleic Acids Res 38(database issue):D806–D813
  • Zhao TY, Willis CJ, Mullen J, Meeley RB, Helentjaris T, Martin D, Downie B (2006) An alkaline alpha-galactosidase transcript is present in maize seeds and cultured embryo cells, and accumulates during stress. Seed Sci Res 16:107–121
  • Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophy Res Commun 379(4):985–989

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-76ed7408-0edf-4f35-be6c-507159e55973
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.