PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 28 | 1 |

Tytuł artykułu

Effect of soil sieving on respiration induced by low-molecular-weight substrates

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The mesh size of sieves has a significant impact upon soil disturbance, affecting pore structure, fungal hyphae, proportion of fungi to bacteria, and organic matter fractions. The effects are dependent upon soil type and plant coverage. Sieving through a 2 mm mesh increases mineralization of exogenously supplied carbohydrates and phenolics compared to a 5 mm mesh and the effect is significant (p<0.05), especially in organic horizons, due to increased microbial metabolism and alteration of other soil properties. Finer mesh size particularly increases arabinose, mannose, galactose, ferulic and pthalic acid metabolism, whereas maltose mineralization is less affected. Sieving through a 5 mm mesh size is suggested for all type of experiments where enhanced mineralization of low-molecular-weight organic compounds needs to be minimalized.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

1

Opis fizyczny

p.119-124,ref.

Twórcy

autor
  • Department of Geology and Soil Science, Mendel University in Brno, Zemidilska 3, 613 00 Brno, Czech Republic
autor
  • Department of Geology and Soil Science, Mendel University in Brno, Zemidilska 3, 613 00 Brno, Czech Republic
autor
  • CzechGlobe - Global Change Research Centre AS CR, v.v.i., Bilidla 986/4a, 603 00 Brno, Czech Republic
autor
  • Department of Geology and Soil Science, Mendel University in Brno, Zemidilska 3, 613 00 Brno, Czech Republic
autor
  • Department of Geology and Soil Science, Mendel University in Brno, Zemidilska 3, 613 00 Brno, Czech Republic

Bibliografia

  • Blouin M.,Zuily-Fodil Y.,Pham-Thi A.T.,Laffray D., Reversat G., Pando A., Tondoh J., and Lavelle, P., 2005. Belowground organism activities affect plant aboveground phenotype, inducing plant tolerance to parasites. Ecol. Lett., 8, 202-208.
  • Devare M.H., Londono-R L.M., and Thies J.E., 2007. Neither transgenic Bt maize (MON863) nor tefluthrin insecticide adversely affect soil microbial activity or biomass: a 3-year field analysis. Soil Biol. Biochem., 39, 2038-2047.
  • Dorodnikov M., Blagodatskaya E., Blagodatsky S., Fangmeier A., and Kuzyakov Y., 2009. Stimulation of r-vs. K-selected microorganisms by elevated atmospheric CO2 depends on soil aggregate size. FEMS Microbiol. Ecol., 69, 43-52.
  • Gödde M., David M.B., Christ M. J., Kaupenjohann M., and Vance G.F., 1996. Carbon mobilization from the forest floor under red spruce in the northeastern U.S.A. Soil Biol. Biochem., 28, 1181-1189.
  • Hartley I., Heinemeyer A., and Ineson P., 2007. Effects of three years of soil warming and shading on the rate of soil respiration: substrate availability and not thermal acclimation mediates observed response. Global Change Biol., 13, 1761-1770.
  • Hassink J., 1992. Effects of soil texture and structure on carbon and nitrogen mineralization in grassland soils. Biol. Fertil. Soils, 14, 126-134.
  • IUSS Working Group WRB, 2006. World Reference Base for Soil Resources. FAO, Rome, Italy.
  • Jan M.T., Roberts P., Tonheim S.K., and Jones D.L., 2009. Protein breakdown represents a major bottleneck in nitrogen cycling in grassland soils. SoilBiol. Biochem., 41, 2272- 2282.
  • Jezierska-Tys S., Rachoń L., Rutkowska A., and Szumiło G., 2011. Microbial populations and enzymatic activity in soil under winter wheat. Int. Agrophys., 25, 21-26.
  • Magid J., Kjaergaard C., Gorissen A., and Kuikman P.J., 1999.
  • Drying and rewetting of a loamy sand soil did not increase the turnover of native organic matter, but retarded the decomposition of added 14C-labelled plant material. Soil Biol. Biochem., 31, 595-602.
  • Marinari S., Lagomarsino A., Moscatelli M.C., Di Tizio A., and Campiglia E., 2010. Soil carbon and nitrogen mineralization kinetics in organic and conventional three-year cropping systems. Soil Till. Res., 109, 161-168.
  • Martens D.A., 2000. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biol. Biochem., 32, 361-369.
  • Nosalewicz A. and Nosalewicz M., 2011. Effect of soil compaction on dehydrogenase activity in bulk soil and rhizosphere. Int. Agrophys., 25, 47-51.
  • Persson T., Karlsson P. S., Seyferth U., Sjöberg R.M., and Rudebeck A., 2000. Carbon mineralisation in European forest soils. Ecol. Stud., 142, 257-275.
  • Rejsek K., Formanek P., and Vranova V., 2010. The soil aminoacids: Quality, distribution and site ecology. Nova Sci. Press, New York, USA.
  • Richardson J.,Chatterjee A., and Jenerette G.D., 2012. Optimum temperatures for soil respiration along a semi-arid elevation gradient in southern California. Soil Biol.Biochem., 46, 89-95.
  • Sitaula B.K., Hansen S., Sitaula J.I.B., and Bakken L.R., 2003. Effects of soil compaction on N2O emission in agricultural soil. Chemosphere, 2, 367-371.
  • ter Laak T.L., Barendregt A., and Hermens J.L.M., 2007. Grinding and sieving soil affects the availability of organic contaminants: A kinetic analysis. Chemosphere, 69, 613-620.
  • Thomson B.C., Ostle N.J., McNamara N.P., Whiteley A.S., and Griffiths R.I., 2010. Effects of sieving, drying and rewetting upon soil bacterial community structure and respiration rates. J. Microb. Methods, 83, 69-73.
  • Turner B.L. and Romeo T.E., 2010. Stability of hydrolytic enzyme activity and microbial phosphorus during storage of tropical rain forest soils. Soil Biol. Biochem., 42, 459-465.
  • Vranova V., Rejsek K., and Formanek P., 2013.Aliphatic, cyclic and aromatic organic acids, vitamins and carbohydrates in soil: a review. Sci. World J., 1-15.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7631e3eb-b85c-43f9-bd55-45779874f69a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.