PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 26 | 2 |

Tytuł artykułu

Energy efficient small inland passenger shuttle ferry with hybrid propulsion - concept design, calculations and model tests

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In recent years, there has been a significant development in “green” and energy efficient propulsion systems, which fits into the general trend of environmentally friendly “green shipping”. The pursued goal is to construct a safe passenger ship that is low in energy demand and equipped with a highly energy efficient, emission-free propulsion system. The paper presents main problems encountered by designers of a small, hybrid-powered ferry powered lithium batteries. The conducted research allowed to create a design of an energy efficient hull shape, which decreases the demand for energy. Completed remote control model tests resulted in a proposal of an energy efficient and safe propulsion system with good manoeuvring capabilities. Measurements completed on an existing ferry permitted completing energy balance and forming an energy management policy.The paper contains the emission calculations computed for the existing ferry that are necessary for the environmental impact analysis. The soon to be constructed, newly designed vessel will provide a valuable contribution to hybrid-propulsion, energy management and unmanned technologies research

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

2

Opis fizyczny

p.85-92,fig.,ref.

Twórcy

autor
  • Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
autor
  • Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland

Bibliografia

  • 1. H.N. Psaraftis, Green Maritime Logistics: The Quest for Win-win Solutions, Transp. Res. Procedia. 14 (2016) 133–142. doi:10.1016/j.trpro.2016.05.049.
  • 2. C. Sys, T. Vanelslander, M. Adriaenssens, I. Van Rillaer, International emission regulation in sea transport: Economic feasibility and impact, Transp. Res. Part D Transp. Environ. 45 (2014) 139–151. doi:10.1016/j.trd.2015.06.009.
  • 3. J. Lister, R.T. Poulsen, S. Ponte, Orchestrating transnational environmental governance in maritime shipping, Glob. Environ. Chang. 34 (2015) 185–195. doi:10.1016/j.gloenvcha.2015.06.011.
  • 4. W. Sihn, H. Pascher, K. Ott, S. Stein, A. Schumacher, G. Mascolo, A Green and Economic Future of Inland Waterway Shipping, Procedia CIRP. 29 (2015) 317–322. doi:10.1016/j.procir.2015.02.171.
  • 5. P. Gilbert, P. Wilson, C. Walsh, P. Hodgson, The role of material efficiency to reduce CO2 emissions during ship manufacture: A life cycle approach, Mar. Policy. 75 (2016) 227–237. doi:10.1016/j.marpol.2016.04.003.
  • 6. S.I. Salem A., TECHNO-ECONOMIC APPROACH TO SOLAR ENERGY SYSTEMS ONBOARD MARINE V EHICLES, Polish Ma rit. Res. 23 (2016) 6 4 –71. doi:0.1515/pom r-2016 – 0033.
  • 7. D. Borelli, T. Gaggero, E. Rizzuto, C. Schenone, Analysis of noise on board a ship during navigation and manoeuvres, Ocean Eng. 105 (2015) 256–269. doi:10.1016/j.oceaneng.2015.06.040.
  • 8. A. Bad ino, D. Borel li, T. Gaggero, E . R izzuto, C . Schenone, Airborne noise emissions from ships: Experimental characterization of the source and propagation over land, Appl. Acoust. 104 (2016) 158–171. doi:10.1016/j.apacoust.2015.11.005.
  • 9. A.M. Bassam, A.B. Phillips, S.R. Turnock, P.A. Wilson, Development of a multi-scheme energy management strategy for a hybrid fuel cell driven passenger ship, Int. J. Hydrogen Energy. (2016) 1–13. doi:10.1016/j.ijhydene.2016.08.209.
  • 10. L.K. Mitropoulos, P.D. Prevedouros, Life cycle emissions and cost model for urban light duty vehicles, Transp. Res. Part D Transp. Environ. 41 (2015) 147–159. doi:10.1016/j.trd.2015.09.024.
  • 11. E.K. Dedes, D.A. Hudson, S.R. Turnock, Investigation of Diesel Hybrid systems for fuel oil reduction in slow speed ocean going ships, Energy. 114 (2016) 444–456. doi:10.1016/j.energ y.2016.07.121.
  • 12. J.J. De-Troya, C . Á lva rez , C . Ferná ndez-Ga rrido, L . Ca rra l, Analysing the possibilities of using fuel cells in ships, Int. J. Hydrogen Energy. 41 (2016) 2853–2866. doi:10.1016/j.ijhydene.2015.11.145.
  • 13. Y.M.A. Welaya, M.M. El Gohary, N.R. Ammar, A comparison between fuel cells and other alternatives for marine electric power generation, Int. J. Nav. Archit. Ocean Eng. 3 (2011) 141–149. doi:10.3744/JNAOE.2011.3.2.141.
  • 14 . N.C. Shih, B.J. Weng, J.Y. Lee, Y.C. Hsiao, Development of a 20 kW generic hybrid fuel cell power system for small ships and underwater vehicles, Int. J. Hydrogen Energy. 39 (2014) 13894–13901. doi:10.1016/j.ijhydene.2014.01.113.
  • 15. V. Alfonsin, A. Suarez, S. Urrejola, J. Miguez, A. Sanchez, Integration of several renewable energies for internal combustion engine substitution in a commercial sailboat, Int. J. Hydrogen Energy. 40 (2015) 6689–6701. doi:10.1016/j.ijhydene.2015.02.113.
  • 16. J. Kowalski, W. Leśniewski, W. Litwin, Multi-source-supplied parallel hybrid propulsion of the inland passenger ship STA.H. Resea rch work on energ y efficienc y of a hybrid propulsion system operating in the electric motor drive mode, Polish Marit. Res. 20 (2013) 20–27. doi:10.2478/pomr-2013-0031.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7616adfe-5962-49da-8a52-674d7b2e66d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.