PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 19 | 3 |

Tytuł artykułu

Fatty acids and physiological responses of corn leaves exposed to heavy metals

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Heavy metals affect biochemical pathway by changing the fatty acid composition in plant cells. The high concentration of heavy metals impresses biochemical pathway and changes fatty acid compositions of plant cells. Fatty acids participate in various biological processes and have the functional role in regulating membrane functions in plants. In the present study, heavy metal content was analyzed with ICP-MS, fatty acid composition was investigated with GC and physiological parameters were determined with spectrophotometrically in the leaves of tomato subjected to increasing doses of heavy metals. In this study, the treatment of heavy metals on the growth medium changed the fatty acid contents of corn. The application of Cu significantly increased the level of palmitic acid and oleic acid. The treatment of Pb raised the content of oleic acid, whereas it significantly decreased the content of α-linolenic acid and erucic acid at 20 and 50 mg kg⁻¹, respectively. The addition of Cd significantly increased the level of oleic acid and linoleic acid; however, it significantly decreased the content of α-linolenic acid and erucic acid. Cu and Pb significantly raised the proline content. The application of Cu and Cd showed similar effect on hydrogen peroxide and the higher doses of them increased the content of H₂O₂. The level of lipid peroxidation significantly increased in response to all applied concentration of Cu. The results obtained in this study show that the aapplication of heavy metals changed the content of fatty acids, particularly that of oleic acid significantly increased in response to them. The levels of proline and lipid peroxidation generally increased together with oleic acid and palmitic acid in the leaves in reply to copper.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

3

Opis fizyczny

p.3-14,fig.,ref.

Twórcy

autor
  • Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartın, Turkey
autor
  • Department of Biology, Faculty of Science and Arts, Gaziosmanpaşa University, Tokat, Turkey
autor
  • Department of Horticulture, Faculty of Agriculture, Gaziosmanpaşa University, Tokat, Turkey
autor
  • Scientific, Technical, Research and Application Center, Hitit University, Corum, Turkey
autor
  • Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, University of Health Sciences, İstanbul, Turkey
autor
  • Department of Chemistry, Faculty of Science, Cankırı Karatekin University, 10100, Cankırı, Turkey

Bibliografia

  • Bates, L.S., Waldren. R.P., Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205–207. DOI: 10.1007/BF00018060
  • Beisson, F., Bonaventure, G., Pollard, M., Ohlrogge, J. (2007). The Acyltransferase GPAT5 Is Required for the Synthesis of Suberin in Seed Coat and Root of Arabidopsis. Plant Cell, 19, 1351–368. DOI: 10.1105/tpc.106.048033
  • Bligh, E.G., Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37, 911–917. DOI: dx.doi.org/10,1139/cjm2014-0700
  • Chalbi, N., Hessini, K., Gandour, M., Mohamed, S.N., Smaoui, A., Abdelly, C., Ben Youssef, N. (2013). Are changes in membrane lipids and fatty acid composition related to salt-stress resistance in wild and cultivated barley? J. Plant Nutr. Soil Sci., 176, 138–147. DOI: 10.1002/jpln.201100413
  • Deleanu, M., Sanda, G.M., Stancu, C.S., Popa, M.E., Sima, A.V. (2016). Profiles of fatty acids and the main lipid peroxidation products of human atherogenic low density lipoproteins. Rev. Chim., 67, 2–7.
  • Demirevska-Kepova, K., Simova-Stoilova, L., Stoyanova, Z.P., Feller, U. (2006). Cadmium Stress in Barley: Growth, Leaf Pigment, and Protein Composition and Detoxification of Reactive Oxygen Species. J. Plant. Nutr., 29, 451–468. DOI: 10.1080/01904160500524951
  • Djebali, W., Zarrouk, M., Brouquisse, R., El-Kahoui, S., Limam, F., Ghorbel, M.H., Chaïbi, W. (2005). Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersicon esculentum) chloroplast membranes. Plant Biol., 7, 358–368. DOI: 10.1055/s-2005-837696
  • Gomez, R.E., Joubes, J., Valentin, N., Batoko, H., Satiat-Jeunemaitre, B., Bernard, A. (2018). Lipids in membrane dynamics during autophagy in plants. J. Exp. Bot. 69, 1287–1299. DOI: 10.1093/jxb/erx392
  • Gonçaalves, J.F., Becker, A.G., Cargnelutti, D., Tabaldi, L.A., Pereira, L.B., Battisti, V., Spanevello, R.M., Morsch, V.M., Nicoloso, F.T., Schetinger, M.R.C. (2007). Cadmium toxicity causes oxidative stress and induces response of the antioxidant system in cucumber seedlings. Brazilian J. Plant Physiol., 19, 223–232. DOI: 10.1590/S1677-04202007000300006.
  • Gratao, P.L., Monteiro, C.C., Antunes, A.M., Peres, L.E.P., Azevedo, R.A. (2008). Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium-induced stress. Ann. Appl. Biol., 153, 321–333. DOI: 10.1111/j.1744-7348.2008.00299.x
  • Guedard, M.L., Faure, O., Besseoule, J.J. (2012). Early changes in the fatty acid composition of photosynthetic membrane lipids from Populus nigra grown on a metallurgical landfill. Chemosphere, 88(6), 693-698. DOI: 10.1016/j.chemosphere.2012.03.079
  • Guo, T.R., Zhang, G.P., Zhang, Y.H. (2007). Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Colloids Surfaces B Biointerfaces, 57, 182–188. DOI: 10.1016/j.colsurfb.2007.01.013
  • Hasan, S.A., Fariduddin, Q., Ali, B., Hayat, S., Ahmad, A. (2009). Cadmium: Toxicity and tolerance in plants. J. Environ. Biol., 30(2), 165–174.
  • Hassan, M., Mansoor, S. (2014). Oxidative stress and antioxidant defense mechanism in mung bean seedlings after lead and cadmium treatments. Turkish J. Agric. For., 38, 55–61. DOI: 10.3906/tar-1212-4
  • Hou, W., Chen, X., Song, G., Wang, Q., Chi, C.C. (2007). Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol. Biochem., 45, 62–69. DOI: 10.1016/j.plaphy.2006.12.005
  • Iba, K. (2002). Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol., 53, 225–245. DOI: 10.1146/annurev.arplant.53.100201.160729
  • John, R., Ahmad, P., Gadgil, K., Sharma, S. (2008). Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil Environ., 54, 262–270.
  • Kaur, G., Asthir, B. (2015). Proline: a key player in plant abiotic stress tolerance. Biol. Plant 59, 609–619. DOI: 10.1007/s10535-015-0549-3
  • Kisa, D. (2018). The Responses of Antioxidant System against the Heavy Metal-Induced Stress in Tomato. J. Nat. Appl. Sci., 22, 1–6. DOI: 10.19113/sdufbed.52379
  • Kısa, D. (2017). Expressions of glutathione-related genes and activities of their corresponding enzymes in leaves of tomato exposed to heavy metal. Russ J Plant Physiol 64:876–882. DOI: 10.1134/S1021443717060048.
  • Le Guédard, M., Faure, O., Bessoule, J.J. (2012). Soundness of in situ lipid biomarker analysis: Early effect of heavy metals on leaf fatty acid composition of Lactuca serriola. Environ. Exp. Bot., 76, 54–59. DOI: 10.1016/j.envexpbot.2011.10.009
  • Liu, X., Huang, B. (2004). Changes in Fatty Acid Composition and Saturation in Leaves and Roots of Creeping Bentgrass Exposed to High Soil Temperature. J. Am. Soc. Hortic. Sci., 129, 795–801.
  • Maiti, S., Ghosh, N., Mandal, C., Das, K., Dey, N., Adak, M.K. (2012). Responses of the maize plant to chromium stress with reference to antioxidation activity. Brazilian J. Plant Physiol. 24, 203–212. DOI: 10.1590/S1677-04202012000300007
  • Mithöfer, A., Schulze, B., Boland, W. (2004). Biotic and heavy metal stress response in plants: Evidence for common signals. FEBS Lett., 566, 1–5. DOI: 10.1016/j.febslet.2004.04.011
  • Moradkhani, S., Ali, R., Nejad, K., Dilmaghani, K. (2012). Effect of salicylic acid treatment on cadmium toxicity and leaf lipid composition in sunflower. J. Stress Physiol. Biochem., 8, 78–89.
  • Morsy, A.A., Salama, K.H.A., Kamel, H.A., Mansour, M.M.F. (2012). Effect of heavy metals on plasma membrane lipids and antioxidant enzymes of Zygophyllum species. Eurasian J. Biosci., 1–10. DOI: 10.5053/ejobios.2012.6.0.1
  • Mourato, M.P., Moreira, I.N., Leitão, I., Pinto, F.R., Sales, J.R., Martins, L.L. (2015). Effect of heavy metals in plants of the genus Brassica. Int. J. Mol. Sci., 16, 17975–17998. DOI: 10.3390/ijms160817975
  • Niu, L., Liao, W. (2016). Hydrogen Peroxide Signaling in Plant Development and Abiotic Responses: Crosstalk with Nitric Oxide and Calcium. Front Plant Sci., 7, 1–14. DOI: 10.3389/fpls.2016.00230
  • Niu, Y., Xiang, Y. (2018). An Overview of Biomembrane Functions in Plant Responses to High-Temperature Stress. Front Plant Sci., 9(915), 1–18. DOI: 10.3389/fpls.2018.00915
  • Pál, M., Horváth, E., Janda, T., Páldi, E., Szalai, G. (2005). Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays) plants. Physiol. Plant 125, 356–364. DOI: 10.1111/j.1399-3054.2005.00545.x
  • Park, W., Feng, Y., Kim, H., Suh, M.C., Ahn, S.J. (2015). Changes in fatty acid content and composition between wild type and CsHMA3 overexpressing Camelina sativa under heavy-metal stress. Plant Cell. Rep. 34, 1489–1498. DOI: 10.1007/s00299-015-1801-1
  • Rabei, A., Hichami, A., Beldi, H., Bellenger, S., Khan, N.A., Soltani, N. (2018). Fatty acid composition, enzyme activities and metallothioneins in Donax trunculus (Mollusca, Bivalvia) from polluted and reference sites in the Gulf of Annaba (Algeria): Pattern of recovery during transplantation. Environ Pollut., 237, 900–907. DOI: 10.1016/j.envpol.2018.01.041
  • Rahayu, S.M., Suseno, S.H., Ibrahim, B. (2014). Proximate, latty acid profile and heavy metal content of selected bycatch fish species from Muara Angke, Indonesia. Pakistan J. Nutr., 13, 480–485.
  • Savchenko, T., Walley, J.W., Chehab, E.W., Xiao, Y., Kaspi, R., Pye, M.F., Mohamed, M.E., Lazarus, C.M., Bostock, R.M., Dehesh, K. (2010). Arachidonic Acid: An Evolutionarily Conserved Signaling Molecule Modulates Plant Stress Signaling Networks. Plant Cell, 22, 3193–3205. DOI: 10.1105/tpc.110.073858
  • Schat, H., Sharma, S.S., Vooijs, R. (1997). Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiol. Plant, 101, 477–482. DOI: 10.1111/j.1399-3054.1997.tb01026.x
  • Sreenivasulu, N., Ramanjulu, S., Ramachandra-Kini, K., Prakash, H.S., Shekar-Shetty, H., Savithri, H.S., Sudhakar, C. (1999). Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Sci., 141, 1–9. DOI: 10.1016/S0168-9452(98)00204-0
  • Sun, R.L., Zhou, Q.X., Sun, F.H., Jin, C.X. (2007). Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environ. Exp. Bot., 60, 468–476. DOI: 10.1016/j.envexpbot.2007.01.004
  • Tamás, L., Dudíková, J., Ďurčeková, K., Halušková, L., Huttová, J., Mistrík, I., Ollé, M. (2008). Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. J. Plant Physiol., 165, 1193–1203. DOI: 10.1016/j.jplph.2007.08.013
  • Upchurch, R.G. (2008). Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett. 30, 967–977. DOI: 10.1007/s10529-008-9639-z
  • Velikova, V., Yordanov, I., Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treat S0168-9452(99)00197-1
  • Verdoni, N., Mench, M., Cassagne, C., Bessoule, J.J. (2001). Fatty acid composition of tomato leaves as biomarkers of metal-contaminated soils. Environ. Toxicol. Chem. Ecotoxicol., 20, 382–388. DOI: 10.1897/1551-5028(2001)020
  • Verma, S., Dubey, R.S. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci., 164, 645–655. DOI: 10.1016/S0168-9452(03)00022-0
  • Walley, J.W., Kliebenstein, D.J., Bostock, R.M., Dehesh, K. (2013). Fatty acids and early detection of pathogens. Curr. Opin. Plant Biol., 16, 520–526. DOI: 10.1016/j.pbi.2013.06.011
  • Zemanová, V., Pavlík, M., Pavlíková, D., Kyjaková, P. (2015). Changes in the contents of amino acids and the profile of fatty acids in response to cadmium contamination in spinach. Plant Soil Environ., 61, 285–290. DOI: 10.17221/274/2015-PSE

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-759dc4ca-c62f-4292-8925-33f4b078faa6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.