PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 75 | 02 |

Tytuł artykułu

Pszczoła miodna jako alternatywny, bezkręgowy organizm modelowy

Warianty tytułu

EN
Honey bee (Apis mellifera) as an alternative model invertebrate organism

Języki publikacji

PL

Abstrakty

EN
Insects perfectly fit the flagship principle of animal research – 3R: to reduce (the number of animals), to replace (animals with alternative models) and to refine (methods). Bees have the most important advantages of a model organism: they cause minimal ethical controversy, they have a small and fully known genome, and they permit the use of many experimental techniques. Bees have a fully functional DNMT toolkit. Therefore, they are used as models in biomedical/genetic research, e.g. in research on the development of cancer or in the diagnostics of mental and neuroleptic diseases in humans. The reversion of aging processes in bees offers hope for progress in gerontology research. The cellular mechanisms of learning and memory coding, as well as the indicators of biochemical immunity parameters, are similar or analogous to those in humans, so bees may become useful in monitoring changes in behavior and metabolism. Bees are very well suited for studies on the dose of the substance applied to determine the lethal dose or the effect of a formula on life expectancy. Honeybees have proven to be an effective tool for studying the effects of a long-term consumption of stimulants, as well as for observing behavioral changes and developing addictions at the individual and social levels, as well as for investigating the effects of continuously delivering the same dose of a substance. The genomic and physiological flexibility of bees in dividing tasks among workers in a colony makes it possible to create a Single- Cohort Colony (SCC) in which peers compared perform different tasks. Moreover behavioral methods (e.g. Proboscis Extension Reflex – PER, Sting Extension Reflex – SER, free flying target discrimination tasks or the cap pushing response) make it possible to analyse changes occurring in honeybee brains during learning and remembering. Algorithms of actions are created based on the behavior of a colony or individual, e.g. Artificial Bee Colony Algorithm (ABCA). Honeybees are also model organisms for profiling the so-called intelligence of a swarm or collective intelligence. Additionally, they serve as models for guidance systems and aviation technologies. Bees have inspired important projects in robotics, such as B-droid, Robobee and The Green Brain Project. It has also been confirmed that the apian sense of smell can be used to detect explosive devices, such as TNT, or drugs (including heroin, cocaine, amphetamines and cannabis). This inconspicuous little insect can revolutionize the world of science and contribute to the solution of many scientific problems as a versatile model.

Wydawca

-

Rocznik

Tom

75

Numer

02

Opis fizyczny

s.93-106,rys.,tab.,bibliogr.

Twórcy

autor
  • Instytut Biologicznych Podstaw Produkcji Zwierzęcej, Wydział Biologii, Nauk o Zwierzętach i Biogospodarki, Uniwersytet Przyrodniczy w Lublinie, ul.Akademicka 13, 20-950 Lublin
  • Instytut Ogrodnictwa, Oddział Pszczelnictwa w Puławach, ul.Kazimierska 2, 24-100 Puławy
  • Instytut Biologicznych Podstaw Produkcji Zwierzęcej, Wydział Biologii, Nauk o Zwierzętach i Biogospodarki, Uniwersytet Przyrodniczy w Lublinie, ul.Akademicka 13, 20-950 Lublin

Bibliografia

  • Abarca C., Albrecht U., Spanagel R.: Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc. Natl. Acad. Sci. 2002, 99, 9026-9030.
  • Abraham A., Jatoth R. K., Rajasekhar A.: Hybrid differential artificial bee colony algorithm. J. Comput. Theor. Nanosci. 2012, 9, 249-257.
  • Abramson C. I., Dinges C. W., Wells H.: Operant conditioning in honey bees (Apis mellifera L.): The cap pushing response. PloS one 2016, 11, e0162347.
  • Abramson C. I., Fellows G. W., Browne B. L., Lawson A., Ortiz R. A.: Development of an ethanol model using social insects: II. Effect of Antabuse on consumatory responses and learned behavior of the honey bee (Apis mellifera L.). Psych. Rep. 2003, 92, 365-378.
  • Abramson C. I., Nolf S. L., Mixson T. A., Wells H.: Can honey bees learn the removal of a stimulus as a conditioning cue?. Ethology 2010, 116, 843-854.
  • Abramson C. I., Place A. J., Aquino I. S., Fernandez A.: Development of an ethanol model using social insects: IV. Influence of ethanol on the aggression of Africanized honey bees (Apis mellifera L.). Psych. Rep. 2004, 94, 1107-1115.
  • Abramson C. I., Sanderson C., Painter J., Barnett S., Wells H.: Development of an ethanol model using social insects: V. Honeybee foraging decisions under the influence of alcohol. Alcohol 2005, 36, 187-193.
  • Abramson C. I., Sheridan A., Donohue D., Kandolf A., Božič J., Meyers J. E., Benbassat D.: Development of an ethanol model using social insects: III. Preferences for ethanol solutions. Psych. Rep. 2004, 94, 227-239.
  • Abramson C. I., Stone S. M., Ortez R. A., Luccardi A., Vann K. L., Hanig K. D., Rice J.: The development of an ethanol model using social insects I: behavior studies of the honey bee (Apis mellifera L.). Alcohol. Clin. Exp. Res. 2000, 24, 1153-1166.
  • Alem S., Perry C. J., Zhu X., Loukola O. J., Ingraham T., Søvik E., Chittka L.: Associative mechanisms allow for social learning and cultural transmission of string pulling in an insect. PLoS Biol. 2016, 14, e1002564.
  • Amdam G. V., Csondes A., Fondrk M. K., Page Jr. R. E.: Complex social behaviour derived from maternal reproductive traits. Nat. 2006, 439, 76.
  • Ammons A. D., Hunt G. J.: Characterization of honey bee sensitivity to ethanol vapor and its correlation with aggression. Alcohol 2008, 42, 129-136.
  • Ammons A. D., Hunt G. J.: Identification of quantitative trait loci and candidate genes influencing ethanol sensitivity in honey bees. Behav. Gen. 2008, 38, 531-553.
  • Avarguès-Weber A., Mota T., Giurfa M.: New vistas on honey bee vision. Apidologie 2012, 43, 244-268.
  • Bajda M., Łoś A., Merska M.: Effect of amphotericin B on the biochemical markers in the haemolymph of honey bees. Med. Weter. 2014, 70, 766-769.
  • Bajda M., Łoś A., Schulz M., Kasperek K.: Mammalian and insect metalloproteases. Med. Weter. 2016, 72, 408-412.
  • Bajda M., Strachecka A., Paleolog J.: Rewersja procesu starzenia u pszczół miodnych (Apis mellifera)? Med. Weter. 2013, 69, 708-711.
  • Barron A. B., Maleszka R., Helliwell P. G., Robinson G. E.: Effects of cocaine on honey bee dance behaviour. J. Exp. Biol. 2009, 212, 163-168.
  • Bobrzecki J.: Encyklopedia pszczelarska. Państwowe Wydawnictwo Rolnicze i Leśne. Warszawa 1989.
  • Boczek J., Kiełkiewicz M.: Starzenie się i długość życia wybranych bezkręgowców i kręgowców. Centrum Doradztwa Rolniczego w Brwinowie Oddział w Poznaniu 2016, s. 94.
  • Borsuk G., Olszewski K., Strachecka A., Paleolog J.: The interaction of worker bees which have increased genotype variance. II. Cage tests of sugar syrup collecting and mortality. J. Apic. Sci. 2011, 55, 89-65.
  • Borsuk G., Olszewski K., Strachecka A., Paleolog J.: The interaction of worker bees with increased genotype variance. I. Field tests of sugar syrup collection and storage. J. Apic. Sci. 2011, 55, 53-58.
  • Bozic J., Abramson C. I., Bedencic M.: Reduced ability of ethanol drinkers for social communication in honeybees (Apis mellifera carnica Poll.). Alcohol 2006, 38, 179-183.
  • Burlando B., Cornara L.: Honey in dermatology and skin care: a review. J. Cosmet. Dermatol. 2013, 12, 306-313.
  • Burzynski S., Paleolog J., Patii S., Ilkowska-Musial E., Borsuk G., Olszewski K., Strachecka A.: Changed gene expression and longevity in honeybees (Apis mellifera) fed with phenylbutyrate-and phenylacetylglutaminate-supplemented diet. Med. Weter. 2013, 69, 754-759.
  • Cakmak I., Abramson C. I., Seven-Cakmak S., Nentchev P., Wells H.: Observations of ethanol exposure on the queen honey bee Apis mellifera anatoliaca (Preliminary note). B. Insectol. 2009, 62, 99-101.
  • Chan Q. W., Foster L. J.: Apis mellifera Proteomics: Where Will the Future Bee? Curr. Proteomics. 2009, 6, 70-83.
  • Chobotow J., Strachecka A.: Morphology and function of insect fat bodies taking into account Apis mellifera L. honey bees. Med. Weter. 2013, 69, 712-715.
  • Cridge A. G., Lovegrove M. R., Skelly J. G., Taylor S. E., Petersen G. E. L., Cameron R. C., Dearden P. K.: The honeybee as a model insect for developmental genetics. Genesis 2017, 55, e23019.
  • Czekońska K.: Matka pszczela. Pasieka 2011, 3, 44.
  • De Foliart G. R.: An overview of the role of edible insects in preserving biodiversity. Ecol. Food. Nutr. 1997, 36, 109-132.
  • De Wasch K., Poelmans S., Verslycke T., Janssen C., Van Hoof N., De Brabander H. F.: Alternative to vertebrate animal experiments in the study of metabolis of illegal growth promotors and veterinary drugs. Anal. Chim. Acta. 2002, 473, 59-69.
  • Deyrup-Olsen I., Linder T. M.: Use of invertebrate animals to teach physiological principles. Adv. Physiol. Educ. 1991, 260, S22-S24.
  • Dinges C. W.: Studies of learned helplessness in honey bees (Apis mellifera ligustica). Oklahoma State University 2016.
  • Dinges C. W., Varnon C. A., Cota L. D., Slykerman S., Abramson C. I.: Studies of learned helplessness in honey bees (Apis mellifera ligustica). J. Exp. Psychol. Anim. Learn. Cogn. 2017, 43, 147.
  • Elekonich M. M., Roberts S. P.: Honey bees as a model for understanding mechanisms of life history transitions. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2005, 141, 362-371.
  • Elmi M., Pawar V. M., Shaw M., Wong D., Zhan H., Srinivasan M. A.: Determining the biomechanics of touch sensation in C. elegans. Sci. Rep. 2017, 7, 12329.
  • Francis R. M., Amiri E., Meixner M. D., Kryger P., Gajda A., Andonov S., Uzunov A., Topolska G., Charistos L., Costa C., Berg S., Bienkowska M., Bouga M., Büchler R., DyrbaW., Hatjina F., Ivanova E., Kezic N., Korpela S., Le Conte Y., Panasiuk B., Pechhacker H., Tsoktouridis G., Wilde J.: Effect of genotype and environment on parasite and pathogen levels in one apiary – A case study. J. Apic. Res. 2014, 53, 230-232.
  • Frank R. T., Berman R. L.: A twenty-four-hour pregnancy test. Am. J. Obstet. Gynecol. 1941, 42, 492-496.
  • Gauthier C., Griffin G.: Using animals in research, testing and teaching. Rev. Sci. Tech. 2005, 24, 735.
  • Giannoni-Guzmán M. A., Giray T., Agosto-Rivera J. L., Stevison B. K., Freeman B., Ricci P., Brown E. A., Abramson C. I.: Ethanol-induced effects on sting extension response and punishment learning in the western honey bee (Apis mellifera). PloS one 2014, 9, e100894.
  • Grüter C., Ratnieks F. L.: Honeybee foragers increase the use of waggle dance information when private information becomes unrewarding. Anim. behav. 2011, 81, 949-954.
  • Grzywnowicz K., Ciołek A., Tabor A., Jaszek M.: Profiles of the body-surface proteolytic system of honey bee queens, workers and drones: Ontogenetic and seasonal changes in proteases and their natural inhibitors. Apidologie 2009, 40, 4-19.
  • Haarmann T., Wingo R. M., Taylor-McCabe K. J.: Honey bees (Apis mellifera) as explosives detectors: Exploring proboscis extension reflex conditioned response to trinitrotolulene (TNT) (No. LA-UR-08-07100; LA-UR-08-7100). Los Alamos National Laboratory 2008.
  • Hananeh W. M., Ismail Z. B., Alshehabat M. A., Ali J. A.: Review of animal models used to study effects of bee products on wound healing: findings and applications. Bull. Vet. Inst. Pulawy 2015, 59, 425-431.
  • Harris J. W., Woodring J.: Effects of stress, age, season, and source colony on levels of octopamine, dopamine and serotonin in the honey bee (Apis mellifera L.) brain. J. Insect. Physiol. 1992, 38, 29-35.
  • Hatjina F.: Hive-entrance fittings as a simple and cost-effective way to increase cross-pollination by honey bees. Bee World 1998, 79, 71-80.
  • Hatjina F., Bieńkowska M., Charistos L., Chlebo R., Costa C., Dražić M. M., Filipi J., Gregorc A., Ivanova E. N., Kezić N., Kopernicky J.: A review of methods used in some European countries for assessing the quality of honey bee queens through their physical characters and the performance of their colonies. J. Apic. Res. 2014, 53, 337-363.
  • Hatjina F., Costa C., Buchler R., Uzunov A., Drazic M., Filipi J., Charistos L., Ruottinen L., Andonov S., Meixner M. D.: More Population dynamics of European honey bee genotypes under different environmental conditions. J. Apic. Res. 2014, 53, 233-247.
  • Hatjina F., Haristos L.: Indirect effects of oxalic acid administered by trickling method on honey bee brood. J. Apic. Res. 2005, 44, 172-174.
  • Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera. Nat. 2006, 443, 931.
  • Hong L., Song D., Zeng Y.: Comparison and improvement in primary airway fibroblast culture across different mammalian species. Cell. Mol. Biol. (Noisy-le-grand) 2014, 61, 108-114.
  • Human H., Brodschneider R., Dietemann V., Dively G., Ellis J. D., Forsgren E., Fries I., Hatjina F., Hu F. L., Jaffé R., Jensen A. B., Köhler A., Magyar J. P., Özkýrým A., Pirk C. W. W., Rose R., Strauss U., Tanner G., Tarpy D. R., Van Der Steen J. J. M., Vaudo A., Vejsnæs F., Wilde J., Williams G. R., Jensen A. B.: Miscellaneous standard methods for Apis mellifera research. J. Apic. Res. 2013, 52, 1-53.
  • Jerzmanowski A.: Organizmy modelowe w badaniach biologicznych. Biol. Szk. 2003, 56, 68-69.
  • Kaissling K. E.: Insect olfaction. Olfaction. Springer, Berlin, Heidelberg 1971, 351-431.
  • Karaboga D., Basturk B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony [ABC] algorithm. J. Glob. Optim. 2007, 39, 459-471.
  • Koszowska A., Dittfeld A., Nowak J., Ziora K.: Pszczoły i ich produkty – znaczenie dla zrównoważonego rozwoju roślin, zwierząt i ludzi. Med. Środ. 2013, 2, 79-84.
  • Kuszewska K., Woyciechowski M.: Age at which larvae are orphaned determines their development into typical or rebel workers in the honeybee (Apis mellifera L.). PloS one 2015, 10, e0123404.
  • Landgraf T., Rojas R., Nguyen H., Kriegel F., Stettin K.: Analysis of the Waggle Dance Motion of Honeybees for the Design of a Biomimetic Honeybee Robot. PLoS one 2011, 6, e21354.
  • Leadbeater E., Chittka L.: The dynamics of social learning in an insect model, the bumblebee (Bombus terrestris). Behav. Ecol. Sociobiol. 2007, 61, 1789-1796.
  • Lihoreau M., Chittka L., Raine N. E.: Monitoring Flower Visitation Networks and Interactions between Pairs of Bumble Bees in a Large Outdoor Flight Cage. PLoS one 2016, 11, e0150844.
  • Lindauer M.: Time-compensated sun orientation in bees. Cold Spring Harbor Symposia on Quantitative Biology Cold Spring Harbor Laboratory Press 1960, 371-377.
  • Liu H., Robinson G. E., Jakobsson E.: Conservation in Mammals of Genes Associated with Aggression-Related Behavioral Phenotypes in Honey Bees. PLoS Comput. Biol. 2016, 12, e1004921.
  • Łoś A., Strachecka A.: Fast and Cost-Effective Biochemical Spectrophotometric Analysis of Solution of Insect Blood and Body Surface Elution. Sensors 2018, 18, 1494.
  • Madras-Majewska B., Kamiński Z., Balcerak M., Ochnio L.: Effect of different oxygen and nitrogen ratios in bees awakened from carbon dioxide anesthesia on their behavior and survival after this exertion. Med. Weter. 2013, 69, 760-762.
  • Madras-Majewska B., Majewski J.: Importance of bees in pollination of crops in the European Union countries. Economic Science for Rural Development Conference Proc. 2016, 42.
  • Madras-Majewska B., Ochnio L., Ochnio M.: Impact of the bioaccumulation of selected toxic elements on the condition of bees and other organisms. Med. Weter. 2014, 70, 715-718.
  • Madras-Majewska B., Ochnio L., Ochnio M.: Use of bee products in livestock nutrition and therapy. Med. Weter. 2015, 71, 94-99.
  • Madras-Majewska B., Ochnio L., Ochnio M., Zajdel B., Kamiński Z., Ostaszewska T., Kamaszewski M.: Influence of different oxygen and nitrogen mixtures on the survival of worker bees after anesthesia with carbon dioxide. Med. Weter. 2014, 70, 770-773.
  • Madras-Majewska B., Rosiak E., Jaworska D., Kulesza K., Wasiak-Zys G., Teper D.: Comparison of selected quality characteristics of domestic and Thailand multifloral honeys. Med. Weter. 2016, 72, 620-626.
  • Majewski J.: Economic value of pollination of major crops in Poland in 2012. Economic Science for Rural Development Conference Proc. 2014, s. 34.
  • Maleszka R.: The social honey bee in biomedical research: realities and expectations. Drug Discov. Today Dis. Models 2014, 12, 7-13.
  • Maze I. S., Wright G. A., Mustard J. A.: Acute ethanol ingestion produces dose-dependent effects on motor behavior in the honey bee (Apis mellifera). J. Insect. Physiol. 2006, 52, 1243-1253.
  • Meixner M. D., Francis R. M., Gajda A., Kryger P., Andonov S., Uzunov A., Topolska G., Costa C., Amiri E., Berg S., Bienkowska M., Bouga M., Büchler R., Dyrba W., Gurgulova K., Hatjina F., Ivanova E., Janes M., Kezic N., Korpela S., Le Conte Y., Panasiuk B., Pechhacker H., Tsoktouridis G., Vaccari G., Wilde J.: Occurrence of parasites and pathogens in honey bee colonies used in a European genotype – environment interactions experiment. J. Apic. Res. 2015, 53, 215-229.
  • Menzel R.: The honeybee as a model for understanding the basis of cognition. Nat. Rev. Neurosci. 2012, 13, 758.
  • Métraux A.: On Some Issues of Human-Animal Studies: An Introduction. Science Context 2016, 29, 1-10.
  • Migdał P., Roman A., Popiela-Pleban E., Kowalska-Goralska M.: The effect of selected pesticides on survival of worker honeybees (Apis mellifera L.) and contents of chromium and silver in their bodies. Przem. Chem. 2016, 95, 1599-1601.
  • Migdał P., Roman A., Popiela-Pleban E., Szumny A., Zonova Y.: Preliminary study on limiting accumulation of heavy metals in honey bee bodies by using extracts of Rumex crispus in the bee diet. Przem. Chem. 2017, 96, 2094-2096.
  • Miklos G. L. G.: Molecules and cognition: the latterday lessons of levels, language, and iac. Evolutionary overview of brain structure and function in some vertebrates and invertebrates. Dev. Neurobiol. 1993, 24, 842-890.
  • Moore D., Angel J. E., Cheeseman I. M., Fahrbach S. E., Robinson G. E.: Timekeeping in the honey bee colony: integration of circadian rhythms and division of labor. Behav. Ecol. Sociobiol. 1998, 43, 147-160.
  • Mustard J. A., Dews L., Brugato A., Dey K., Wright G. A.: Consumption of an acute dose of caffeine reduces acquisition but not memory in the honey bee. Behav. Brain Res. 2012, 232, 217-224.
  • Mustard J. A., Edgar E. A., Mazade R. E., Wu C., Lillvis J. L., Wright G. A.: Acute ethanol ingestion impairs appetitive olfactory learning and odor discrimination in the honey bee. Neurobiol. Learn. Mem. 2008, 90, 633-643.
  • Muth F., Papaj D. R., Leonard A. S.: Colour learning when foraging for nectar and pollen: bees learn two colours at once. Biol. Lett. 2015, 11, 20150628.
  • Nagai T., Sakai M., Inoue R., Inoue H., Suzuki N.: Antioxidative activities of some commercially honeys, royal jelly, and propolis. Food. Chem. 2001, 75, 237-240.
  • National Research Council. Use of laboratory animals in biomedical and behavioral research. National Academies Press 1988.
  • Noori A. L., Al-Ghamdi A., Ansari M. J., Al-Attal Y., Salom K.: Synergistic effects of honey and propolis toward drug multi-resistant Staphylococcus aureus, Escherichia coli and Candida albicans isolates in single and polymicrobial cultures. Int. J. Med. Sci. 2012, 9, 793.
  • O’Neal S. T., Anderson T. D.: Dissection and observation of honey bee dorsal vessel for studies of cardiac function. J. Vis. Exp. 2016, 118, e55029-e55029.
  • Page Jr. R. E., Fondrk M. K., Hunt G. J., Guzman-Novoa E., Humphries M. A., Nguyen K., Greene A. S.: Genetic dissection of honeybee (Apis mellifera L.) foraging behavior. J. Hered. 2000, 91, 474-479.
  • Paleolog J.: Pszczoły jako model doświadczalny. XLIX Naukowa Konferencja Pszczelarska 13-14 marca 2012, s. 28-32.
  • Panasiuk B., Skowronek W., Bienkowska M., Gerula D., Węgrzynowicz P.: Age of worker bees performing hygienic behaviour in a honeybee colony. J. Apic. Sci. 2010, 54, 109-115.
  • Perry C. J., Barron A. B., Chittka L.: The frontiers of insect cognition. Curr. Opin. Behav. Sci. 2017, 16, 111-118.
  • Pirk C. W., de Miranda J. R., Kramer M., Murray T. E., Nazzi F., Shutler D., Van Der Steen J. J. M., van Dooremalen C.: Statistical guidelines for Apis mellifera research. J. Apic. Res. 2013, 52, 1-24.
  • Prabucki J.: Pszczelnictwo. Wydawnictwo Promocyjne Albatros, Szczecin 1998.
  • Rembold H., Lackner B.: Rearing of honeybee larvae in vitro: Effect of yeast extract on queen differentiation. J. Apic. Res. 1981, 20, 165-171.
  • Renner M.: The contribution of the honey bee to the study of time-sense and astronomical orientation. Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press 1960, s. 361-367.
  • Rodacy P. J., Bender S., Bromenshenk J., Henderson C., Bender G.: Training and deployment of honeybees to detect explosives and other agents of harm. Detection and Remediation Technologies for Mines and Minelike Targets VII. International Society for Optics and Photonics 2002, s. 474-482.
  • Roman A., Madras-Majewska B., Popiela-Pleban E.: Comparative study of selected toxic elements in propolis and honey. J. Apic. Sci. 2011, 55, 97-106.
  • Rubin E. B., Shemesh Y., Cohen M., Elgavish S., Robertson H. M., Bloch G.: Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res. 2006, 16, 1352-1365.
  • Russell W. M. S., Burch R. L., Hume C. W.: The Principles of Humane Experimental Technique. Methuen, London 1959.
  • Sakarya Y., Sakarya R., Ozcimen M., Goktas S., Ozcimen S., Alpfidan I., Ivacık I. S., Erdogan E., Cetinkaya S., Bukus A.: Ocular penetration of topically applied 1% tigecycline in a rabbit model. Int. J. Ophthalmol. 2017, 10, 679-683.
  • Scholz H., Mustard J. A.: Invertebrate Models of Alcoholism. Behavioral neurobiology of alcohol addiction. Springer. Berlin Heidelberg 2011, s. 433-457.
  • Schott M., Klein B., Vilcinskas A.: Detection of Illicit Drugs by Trained Honeybees (Apis mellifera). PLoS one 2015, 10, e0128528.
  • Schulz D. J., Barron A. B., Robinson G. E.: A role for octopamine in honey bee division of labor. Brain Behav. Evol. 2002, 60, 350-359.
  • Seeley T. D.: Honeybee Democracy. Princeton University Press 2010.
  • Seyhan M. F., Yılmaz E., Timirci-Kahraman Ö., Saygılı N., Kısakesen H. İ., Eronat A. P., Ceviz A. B., Bilgiç Gazioğlu S., Yılmaz-Aydoğan H., Öztürk O.: Anatolian honey is not only sweet but can also protect from breast cancer: Elixir for women from artemis to present. IUBMB life 2017, 69, 677-688.
  • Shaw P. J., Cirelli C., Greenspan R. J., Tononi G.: Correlates of sleep and waking in Drosophila melanogaster. Sci. 2000, 287, 1834-1837.
  • Si A., Zhang S. W., Maleszka R.: Effects of caffeine on olfactory and visual learning in the honey bee (Apis mellifera). Pharmacol. Biochem. Behav. 2005, 82, 664-672.
  • Skok J., Gerken M.: Suckling strategies in the pig: The Göttingen minipig as a model. Livest Sci. 2016, 184, 78-84.
  • Sokolowski M. B. C., Abramson C. I., Craig D. P. A.: Ethanol self-administration in freeflying honeybees (Apis mellifera L.) in an operant conditioning protocol. Alcohol. Clin. Exp. Res. 2012, 36, 1568-1577.
  • Southwick E. E.: The honey bee cluster as a homeothermic superorganism. Comp. Biochem. Physiol. Part A Physiol. 1983, 75, 641-645.
  • Søvik E., Barron A. B.: Invertebrate models in addiction research. Brain Behav. Evol. 2013, 82, 153-165.
  • Søvik E., Cornish J. L., Barron A. B.: Cocaine tolerance in honey bees. PloS one 2013, 8, e64920.
  • Søvik E., Even N., Radford C. W., Barron A. B.: Cocaine affects foraging behaviour and biogenic amine modulated behavioural reflexes in honey bees. PeerJ 2014, 2, e662.
  • Srinivasan M. V.: Honey bees as a model for vision, perception, and cognition. Annu. Rev. Entomol. 2010, 55, 267-284.
  • Srinivasan M. V.: Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics. Physiol. Rev. 2011, 91, 413-460.
  • Strachecka A., Borsuk G., Olszewski K., Paleolog J.: A new detection method for a newly revealed mechanism of pyrethroid resistance development in Varroa destructor. Parasitol. Res. 2015, 114, 3999-4004.
  • Strachecka A., Borsuk G., Olszewski K., Paleolog J., Gagoś M., Chobotow J., Nawrocka A., Gryzińska M., Bajda M.: The effect of amphotericin b on the lifespan, body-surface protein concentrations, and DNA methylation levels of honey bees (Apis mellifera). J. Apic. Sci. 2012, 56, 107-113.
  • Strachecka A., Borsuk G., Paleolog J., Olszewski K., Bajda M., Chobotow J.: Body-surface compounds in buckfast and caucasian honey bee workers (Apis Mellifera). J. Apic. Sci. 2014, 58, 5-15.
  • Strachecka A., Borsuk G., Paleolog J., Olszewski K., Chobotow J.: Antipathogenic activity on the body surface of adult workers of Apis mellifera. Med. Weter. 2012, 68, 290-292.
  • Strachecka A., Borsuk G., Paleolog J., Olszewski K., Chobotow J., Skoczylas D.: Body-surface metalloprotease activity in Apis mellifera L. workers relative to environmental pollution. Med. Weter. 2012, 68, 406-410.
  • Strachecka A., Chobotow J., Paleolog J., Łoś A., Schulz M., Teper D., Kucharczyk H., Grzybek M.: Insights into the biochemical defence and methylation of the solitary bee Osmia rufa L: A foundation for examining eusociality development. PloS one 2017, 12, e0176539.
  • Strachecka A., Demetraki-Paleolog J.: System proteolityczny powierzchni ciała Apis mellifera w zachowaniu zdrowotności rodzin pszczelich. Kosmos 2011, 60, 43-51.
  • Strachecka A., Gryzińska M. M., Krauze M., Grzywnowicz K.: Profile of the body surface proteolytic system in Apis mellifera queens. Czech J. Anim. Sci. 2011, 56, 15-22.
  • Strachecka A., Grzywnowicz K.: Aktywność inhibitorów proteaz na powierzchni ciała pszczoły miodnej. Med. Weter. 2008, 64, 1256-1259.
  • Strachecka A., Krauze M., Olszewski K., Borsuk G., Paleolog J., Merska M., Chobotow J., Bajda M., Grzywnowicz K.: Unexpectedly strong effect of caffeine on the vitality of western honeybees (Apis mellifera). Biochem., Moscow 2014, 79, 1192-1201.
  • Strachecka A., Olszewski K., Paleolog J.: Curcumin stimulates biochemical mechanisms of Apis mellifera resistance and extends the apian life-span. J. Apic. Sci. 2015, 59, 129-141.
  • Strachecka A., Olszewski K., Paleolog J., Borsuk G., Bajda M., Krauze M., Merska M., Chobotow J.: Coenzyme Q10 treatments influence the lifespan and key biochemical resistance systems in the honeybee, Apis mellifera. Arch. Insect. Biochem. Physiol. 2014, 86, 165-179.
  • Strachecka A., Paleolog J., Borsuk G., Olszewski K.: The influence of formic acid on the body surface proteolytic system at different developmental stages in Apis mellifera L. workers. J. Apic. Res. 2012, 51, 252-262.
  • Strachecka A., Paleolog J., Borsuk G., Olszewski K., Bajda M.: Metylowanie DNA u pszczoły miodnej (Apis mellifera) i jego wpływ na badania biologiczne. Med. Weter. 2012, 68, 392.
  • Strachecka A., Paleolog J., Grzywnowicz K.: The surface proteolytic activity in Apis mellifera. J. Apic. Sci. 2008, 49-56.
  • Strachecka A., Paleolog J., Olszewski K., Borsuk G.: Influence of amitraz and oxalic acid on the cuticle proteolytic system of Apis mellifera L. workers. Insects 2012, 3, 821-832.
  • Strachecka A., Sawicki M., Borsuk G., Olszewski K., Paleolog J., Bajda M., Chobotow J.: Use of acaricides for fighting Varroa destructor mites in bee colonies: efficiency and risk. Med. Weter. 2013, 69, 219-222.
  • Sun J., Shen R., Schrock M. S., Liu J., Pan X., Quimby D., Zanesi N., Druck T., Fong L. Y., Huebner K.: Reduction in squamous cell carcinomas in mouse skin by dietary zinc supplementation. Cancer Med. 2016, 5, 2032-2042.
  • Tanimoto Y., Ohkuma T., Oguri K., Yoshimura H.: Species difference in metabolism of strychnine with liver microsomes of mice, rats, guinea pigs, rabbits and dogs. J. Pharmacobiodyn. 1990, 13, 136-141.
  • Teodorovic D.: Transport modeling by multi-agent systems: a swarm intelligence approach. Transport Plan. Techn. 2003, 26, 289-312.
  • Tereshko V., Loengarov A.: Collective decision making in honey-bee foraging dynamics. Comp. Inf. Sys. 2005, 9, 1-7.
  • Uzunov A., Costa C., Panasiuk B., Meixner M., Kryger P., Hatjina F., Bouga M., Andonov S., Bienkowska M., Le Conte Y.: Swarming, defensive and hygienic behaviour in honey bee colonies of different genetic origin in a pan-European experiment. J. Apicult. Res. 2014, 53, 248-260.
  • Velazquez-Ulloa N. A.: A Drosophila model for developmental nicotine exposure. PloS one 2017, 12, e0177710.
  • Walkowiak K., Pacholska-Bogalska J., Szymczak M., Rosiński G.: Owady – alternatywne organizmy modelowe do badań chorób człowieka. Kosmos 2015, 1, 11-20.
  • Wilde J., Frączek R. J., Siuda M., Bąk B., Hatjina F., Miszczak A.: The influence of sublethal doses of imidacloprid on protein content and proteolytic activity in honey bees (Apis mellifera L.). J. Apicul. Res. 2016, 55, 212-220.
  • Williams C.: Summon the bee bots: can flying robots save our crops? New Sci. 2013, 220, 42-45.
  • Wilson E. O.: Kin selection as the key to altruism: its rise and fall. Soc. Res. 2005, 159-166.
  • Wilson-Sanders S. E.: Invertebrate models for biomedical research, testing, and education. ILAR J. 2011, 52, 126-152.
  • Withers G. S., Fahrbach S. E., Robinson G. E.: Effects of experience and juvenile hormone on the organization of the mushroom bodies of honey bees. Dev. Neurobiol. 1995, 26, 130-144.
  • Wolfart E.: Position refinement for a navigating robot using motion information based on honey bee strategies. PhD Thesis. MSc thesis, Dept. of Artificial Intelligence, University of Edinburgh 1994.
  • Woodgate J. L., Makinson J. C., Lim K. S., Reynolds A. M., Chittka L.: Life-long radar tracking of bumblebees. PloS one 2016, 11, e0160333.
  • Woyciechowski M., Kuszewska K.: Swarming generates rebel workers in honeybees. Curr. Biol. 2012, 22, 707-711.
  • Wright G. A., Baker D. D., Palmer M. J., Stabler D., Mustard J. A., Power E. F., Borland A. M., Stevenson P. C.: Caffeine in Floral Nectar Enhances a Pollinator’s Memory of Reward. Science 2013, 339, 1202-1204.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-752d2394-fa76-424f-b303-d082420c413d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.