EN
Fruit ripening is generally attributed to disassembly of cellular wall, particularly due to solubilisation and depolymerisation of pectin and hemicellulose. Experiments were conducted to test effects of hydroxyl radicals (OH) on the scission of cellular wall polysaccharides from pulp tissues of banana fruit at different ripening stage. Cellular wall materials were isolated from pulp tissues of banana fruit at different ripening stages. Two pectic fractions, water soluble pectin (WSP) and acid soluble pectin (ASP), and two hemicellulosic fractions, 1 M KOH soluble hemicellulose (HC1) and 4 M KOH soluble hemicellulos (HC2), were obtained from the cellular wall materials from pulp tissues, respectively. Effects of OH induced by the Fenton reaction on the scission of pectin and hemicellulose in vitro were investigated. As fruit ripening progressed, the sugar components of the WSP, HC1 and HC2 attacked by OH showed obvious molecular-mass downshifts. Thus, OH caused the disassembly of polysaccharides (WSP, ASP, HC1 and HC2) from cellular walls of pulp tissues of banana fruit, demonstrated by the reduced molecular mass distribution. Moreover, OH production in pulp tissues increased significantly as banana fruit ripened, which further help account for the role of OH in accelerated fruit ripening.