PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 23 |

Tytuł artykułu

C-fos upregulates P-glycoprotein, contributing to the development of multidrug resistance in HEp-2 laryngeal cancer cells with VCR-induced resistance

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: Laryngeal cancer tends to have a very poor prognosis due to the unsatisfactory efficacy of chemotherapy for this cancer. Multidrug resistance (MDR) is the main cause of chemotherapy failure. The proto-oncogene c-fos has been shown to be involved in the development of MDR in several tumor types, but few studies have evaluated the relationship between c-fos and MDR in laryngeal cancer. We investigated the role of c-fos in MDR development in laryngeal cancer cells (cell line: human epithelial type 2, HEp-2) using the chemotherapeutic vincristine (VCR). Methods: HEp-2/VCR drug resistance was established by selection against an increasing drug concentration gradient. The expressions of c-fos and multidrug resistance 1 (mdr1) were measured using qPCR and western blot. C-fos overexpression or knockdown was performed in various cells. The intracellular rhodamine-123 (Rh-123) accumulation assay was used to detect the transport capacity of P-glycoprotein (P-gp, which is encoded by the mdr1 gene). Results: HEp-2 cells with VCR-induced resistance (HEp-2/VCR cells) were not only resistant to VCR but also evolved cross-resistance to other chemotherapeutic drugs. The expressions of the c-fos and mdr1genes were significantly higher in the HEp-2/ VCR cells than in control cells. C-fos overexpression in HEp-2 cells (c-fos WT) resulted in increased P-gp expression and increased the IC50 for 5-FU. C-fos knockdown in the HEp-2/VCR cells (c-fos shRNA) resulted in decreased P-gp expression and decreased IC50 for 5-FU. An intracellular Rh-123 accumulation assay showed that the mean intracellular fluorescence intensity (MFI) was lower in the HEp-2/VCR cells than in HEp-2 cells. C-fos WT cells also showed lower MFI. By contrast, c-fos shRNA cells exhibited a higher MFI than the control group. Conclusion: C-fos increased the expression of P-gp and mdr1 in the HEp-2/VCR cells, and enhanced the efflux function of the cells, thereby contributing to the development of MDR.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Opis fizyczny

p.1-12,fig.,ref.

Twórcy

autor
  • Department of Otorhinolaryngology, Shanxi Provincial People’s Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030012, China
autor
  • Department of Otorhinolaryngology, Shanxi Provincial People’s Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030012, China
autor
  • Department of Otorhinolaryngology, Shanxi Provincial People’s Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030012, China
autor
  • Department of Otorhinolaryngology, Shanxi Provincial People’s Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030012, China
autor
  • Department of Otorhinolaryngology, Shanxi Provincial People’s Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030012, China
autor
  • Artificial Livers Treatment Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China

Bibliografia

  • 1. Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011;61:212–36.
  • 2. Genden EM, Ferlito A, Silver CE, Jacobson AS, Werner JA, Suarez C, et al. Evolution of the management of laryngeal cancer. Oral Oncol. 2007;43:431–9.
  • 3. Martinez-Outschoorn UE, Pavlides S, Sotgia F, Lisanti MP. Mitochondrial biogenesis drives tumor cell proliferation. Am J Pathol. 2011;178:1949–52.
  • 4. Salib RJ, Drake-Lee A, Howarth PH. Allergic rhinitis: past, present and the future. Clin Otolaryngol Allied Sci. 2003; 28:291–303.
  • 5. An Y, Kiang A, Lopez JP, Kuo SZ, Yu MA, Abhold EL, et al. Cigarette smoke promotes drug resistance and expansion of cancer stem cell-like side population. PLoS One. 2012;7:e47919.
  • 6. Lin XX, Yang XF, Jiang JX, Zhang SJ, Guan Y, Liu YN, et al. Cigarette smoke extract-induced BEAS-2B cell apoptosis and anti-oxidative Nrf-2 up-regulation are mediated by ROS-stimulated p38 activation. Toxicol Mech Methods. 2014;24:575–83.
  • 7. MJr H, Silver CE, Hartl DM, Takes RP, Rodrigo JP, Robbins KT, et al. Chemotherapy regimens and treatment protocols for laryngeal cancer. Expert Opin Pharmacother. 2010;11:1305–16.
  • 8. Montazami N, Aghapour M, Farajnia S, Baradaran B. New insights into the mechanisms of multidrug resistance in cancers. Cell Mol Biol (Noisy-le-grand). 2015;61:70–80.
  • 9. Shi R, Peng H, Yuan X, Zhang X, Zhang Y, Fan D, et al. Down-regulation of c-fos by shRNA sensitizes adriamycinresistant MCF-7/ADR cells to chemotherapeutic agents via P-glycoprotein inhibition and apoptosis augmentation. J Cell Biochem. 2013;114:1890–900.
  • 10. Hu Y, Cheng X, Li S, Zhou Y, Wang J, Cheng T, et al. Inhibition of sorcin reverses multidrug resistance of K562/A02 cells and MCF-7/A02 cells via regulating apoptosis-related proteins. Cancer Chemother Pharmacol. 2013;72:789–98.
  • 11. Milde-Langosch K. The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer. 2005;41: 2449–61.
  • 12. Bai L, Mao R, Wang J, Ding L, Jiang S, Gao C, et al. ERK1/2 promoted proliferation and inhibited apoptosis of human cervical cancer cells and regulated the expression of c-Fos and c-Jun proteins. Med Oncol. 2015;32:57.
  • 13. Mar AC, Chu CH, Lee HJ, Chien CW, Cheng JJ, Yang SH, et al. Interleukin-1 receptor type 2 acts with c-Fos to enhance the expression of Interleukin-6 and vascular endothelial growth factor a in colon cancer cells and induce angiogenesis. J Biol Chem. 2015;290:22212–24.
  • 14. Dong C, Ye DX, Zhang WB, Pan HY, Zhang ZY, Zhang L. Overexpression of c-fos promotes cell invasion and migration via CD44 pathway in oral squamous cell carcinoma. J Oral Pathol Med. 2015;44:353–60.
  • 15. Zheng Y, Wang GR, Jia JJ, Luo SJ, Wang H, Xiao SX. Expressions of oncogenes c-fos and c-myc in skin lesion of cutaneous squamous cell carcinoma. Asian Pac J Trop Med. 2014;7:761–4.
  • 16. Guo JC, Li J, Zhao YP, Zhou L, Cui QC, Zhou WX, et al. Expression of c-fos was associated with clinicopathologic characteristics and prognosis in pancreatic cancer. PLoS One. 2015;10:e0120332.
  • 17. Gupta S, Kumar P, Kaur H, Sharma N, Saluja D, Bharti AC, et al. Selective participation of c-Jun with Fra-2/c-Fos promotes aggressive tumor phenotypes and poor prognosis in tongue cancer. Sci Rep. 2015;5:16811.
  • 18. Zhang X, Huang X, Olumi AF. Repression of NF-kappaB and activation of AP-1 enhance apoptosis in prostate cancer cells. Int J Cancer. 2009;124:1980–9.
  • 19. Seiwert TY, Cohen EE. State-of-the-art management of locally advanced head and neck cancer. Br J Cancer. 2005; 92:1341–8.
  • 20. Herpen CM, Mauer ME, Mesia R, Degardin M, Jelic S, Coens C, et al. Short-term health-related quality of life and symptom control with docetaxel, cisplatin, 5-fluorouracil and cisplatin (TPF), 5-fluorouracil (PF) for induction in unresectable locoregionally advanced head and neck cancer patients (EORTC 24971/TAX 323). Br J Cancer. 2010; 103:1173–81.
  • 21. Margulis A, Zhang W, Alt-Holland A, Crawford HC, Fusenig NE, Garlick JA. E-cadherin suppression accelerates squamous cell carcinoma progression in three-dimensional, human tissue constructs. Cancer Res. 2005;65:1783–91.
  • 22. Jabr-Milane LS, van Vlerken LE, Yadav S, Amiji MM. Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat Rev. 2008;34:592–602.
  • 23. Mahner S, Baasch C, Schwarz J, Hein S, Wolber L, Janicke F, et al. C-Fos expression is a molecular predictor of progression and survival in epithelial ovarian carcinoma. Br J Cancer. 2008;99:1269–75.
  • 24. Meng X, Wang G, Liu P, Hou J, Jin Y, Yu Y, et al. ATP-binding cassette B1 gene polymorphisms, mRNA expression and chemosensitivity to paclitaxel in non-small cell lung cancer cells. Respirology. 2011;16:1228–34.
  • 25. Andersen V, Vogel U, Godiksen S, Frenzel FB, Saebo M, Hamfjord J. Et al.low ABCB1 gene expression is an early event in colorectal carcinogenesis. PLoS One. 2013;8:e72119.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-73698a21-de0e-4d0d-9b3a-ad387e836090
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.