PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 2 |

Tytuł artykułu

Environmental monitoring of heavy-metals status and human health risk assessment in the soil of Sahl El-Hessania area, Egypt

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Sahl El-Hussainia is an important reclamation project in Egypt located on El-Salam channel. Soils of these areas are irrigated with drainage water mixed with Nile water at a ratio of 1:1. North of Sahl El-Hussinia there exists Lake Manzalla, which receives large quantities of domestic, industrial, and agricultural discharges. The current study was aimed at measuring the contamination level of Sahl El-Hussainia soils with heavy metals and their effects on the grown plant contents of these contaminants. In addition, human risks resulting due to exposure to these heavy metals through different exposure routes were evaluated. To achieve these goals, soil and rice plant samples were collected from Khalid Ibn El-Waleed village, SahlEl-Hussainia, and analyzed for their contents of trace elements, i.e. Pb, Cd, Co, Ni, As, and Se. The results reveal that the soil of study suffers from moderate contamination with Pb, Co, Ni, and As to severe contamination with Cd and Se. Moreover, As and Pb were found at high concentrations in rice grains exceeding the permissible ones. The expected health risk assessments indicate that As, Se, and Pb can possess a health threat for children, whereas only As and Se can posses health problem for adults. Arsenic was found to contribute to more magnitude of cancer risks. Finally, bad management of Sahl El-Hussainia resulted in contamination of soil with trace elements. Accordingly, food obtained from the area of study might not be suitable for human consumption.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

2

Opis fizyczny

p.459-467,fig.,ref.

Twórcy

  • Soil Science Department, Faculty of Agriculture, Assiut University, The New Valley Branch, Egypt
autor
  • Faculty of Agriculture, Moshtohor, Benha University Qhalubia, Egypt
autor
  • Soils, Water and Environment Research Institute (SWERI), Agricultural Research Center (ARC), Giza, Egypt

Bibliografia

  • 1. WORLD-BANK, Egypt, Arab Rep. The world bank -working for a world free of poverty, 2013.
  • 2. ANG, H., WANG, L., ZEHNDER, A.J.B., Water scarcity and food trade in the Southern and Eastern Mediterranean countries. Food Policy. 32, 585-605, 2007.
  • 3. KAMEL S., DAHL C., The economics of hybrid power systems for sustainable desert agriculture in Egypt. Energy. 30, 1271-1281, 2005.
  • 4. BARRANIA A., EI-SHENAWI M., El- SAYED N., SHERIF M., GLEASON J., HUSSEIN S., Resource allocation policy for fisheries development versusu land development. In: (RDI), R.D.a.I.U. (Ed.). Ministry of Agriculture and Land Reclamation and US Agency For Inti. Development, Cairo, 2001.
  • 5. HAFEZ A., Investigation of El-Salam canal project in Northern Sinai, Egypt phase-1: environmental baseline, soil and water quality studies. Ninth International Water Technology Conference, IWTC9 Sharm El-Sheikh, Egypt, pp. 953-970, 2005.
  • 6. DONIA N.S., Development of El-Salam canal automation system. J Water Resource Prot. 4, 597-604, 2012.
  • 7. RASHED A.A., KHALIFA E., FAHMY H.S., Paddy rice cultivation in irrigated water managed saline sodic lands under reclamation, Egypt. Paper No 071. Presented at the 9th International Drainage Workshop, Utrecht, The Netherlands, 2003.
  • 8. GAFRD, Drying of El-Manzala lake. General Authority for Fish Resources Development, 2009a.
  • 9. WAHAAB R.A., BADAWY M.I., Water quality assessment of the river Nile system: an overview. Biomed. Environ. Sci. 17, 87-100, 2004.
  • 10. EL-SHEIKH M.A., SALEH H.I., EL-QUOSY D.E., MAHMOUD A.A., Improving water quality in polluated drains with free water surface constructed wetlands. Ecol Eng. 36, 1478-1484, 2010.
  • 11. ABRAHAMS P.W., Soils: their implications to human health. Sci. Total Environ. 291, 1-32, 2002.
  • 12. AKOTO O.J., EPHRAIM J.H., DARKO J., Heavy metals pollution in surface soils in the vicinity of abundant railway servicing workshop in Kumasi Ghana. Int. J. Environ. Res. 2, 359-364, 2008.
  • 13. JONES J. B., Laboratory guide for conducting soils tests and plant analysis, CRC Press, New York, 2001.
  • 14. NELSON D.W., SOMMERS L.E., Total carbon, organic carbon, and organic matter. In: Page, A.L. (Ed.), Methods of Soil Analysis Part 2. Agronomy. 9:. Am. Soc. of Agron., Madison, WI., pp. 961-1010,1996.
  • 15. CHIRENJE T., MA L.Q., CLARK C., REEVES M., Cu, Cr, and As distribution in soil adjacent to pressure-treated decks, fences and poles. Environ. Pollut. 124, 407-417, 2003.
  • 16. SOLTANPOUR P. N., Use of ammonium bicarbonate DTPA soil test to evaluate elemental availability and toxicity. Commun. Soil Sci. Plant Anal. 16, 323-338,1985.
  • 17. BABA K., ARAO T., MAEJIMA Y., WATANABE E., EUN, H., ISHIZAKA M., Arsenic speciation in rice and soil containing related compounds of chemical warfare agents, Analytical Chemistry, 80, 5768-5775, 2008.
  • 18. LOSKA K., WIECHUŁA D., KORUS I., Metal contamination of farming soils affected by industry. Environ International. 30, 159-165, 2004.
  • 19. LIU W.-H., ZHAO J.-Z., OUYANG Z.-Y, SÖDERLUND L., LIU G.-H., Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environ International. 31, 805-812, 2005.
  • 20. BHUIYAN M.A.H., PARVEZ L., ISLAM M.A., DAMPARE S.B., SUZUKI S., Heavy metal pollution of coal mine- affected agricultural soils in the northern part of Bangladesh. J Hazard Mater. 173, 384-392, 2010.
  • 21. RASHED M.N., Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. J Hazard Mater. 178, 739-746, 2010.
  • 22. KUMAR R., SOLANKI R., KUMAR J.I.N., Seasonal variation in heavy metal contamination in water and sediments of river Sabarmati and Kharicut canal at Ahmedabad, Gujarat. Environ Monit Assess. 185, 359-368, 2013.
  • 23. NTZALA G., KOUKOULAKIS P., PAPADOPOULOS A., LEOTSINIDIS M., SAZAKLI E., KALAVROUZIOTIS I., Interrelationships of pollution load index, transfer factor, and concentration factor under the effect of sludge. Environ Monit Assess. 185, 5231-5242, 2013.
  • 24. LEE S.W., LEE B.T., KIM J.Y., KIM K.W., LEE J.S., Human risk assessment for heavy metals and As contamination in the abandoned metal mine areas, Korea, Environ Monit Assess. 119, 233-244, 2006.
  • 25. ORDONEZ A., ALVAREZ R. CHARLESWORTH S. DE MIGUEL E. LOREDO J., Risk assessment of soils contaminated by mercury mining, Northern Spain. J Environ Monit. 13, 128-136, 2011.
  • 26. ABDELHAFEZ A.A., ABBAS H.H., ABD-EL-AAL R.S., KANDIL N., LI J., MAHMOUD W., Environmental and health impacts of successive mineral fertilization in Egypt. Clean. 40, 356-363, 2012.
  • 27. ONOF.B., GUIMARAESL.R., PENIDO E.S., CARVALHO, G.S., HALE B., TOUJAGUEZ R., BUNDSCHUH J., Arsenic bioaccessibility in a gold mining area: a health risk assessment for children. Environ Geochem Health. 34, 457- 465, 2012.
  • 28. WHO (World Health Organization), Safety evaluation of certain food additives and contaminants, Fifty-fifth meeting of the joint FAO/WHO expert committee on food additives, Toxicological Monographs, WHO Food Additive Series, WHO, Geneva, 2001.
  • 29. U.S. Environmental Protection Agency (USEPA). EPA Supplemental Guidance, Office of Solid Waste and Emergency Response, Directive 9285.6-03. US Environmental Protection Agency, Washington DC, 1991.
  • 30. ATAFAR Z., MESDAGHINIA A., NOURI J., HOMAEE M., YUNESIAN M., AHMADIMOGHADDAM M., MAHVI A.H., Effect of fertilizer application on soil heavy metal concentration. Environ Monit Assess. 160, 83-89, 2008.
  • 31. ABBAS, M.H.H., ABDELHAFEZ, A.A. Role of EDTA in arsenic mobilization and its uptake by maize grown on an As-polluted soil. Chemosphere. 90, 588-594, 2013.
  • 32. GAFRD, Main problems in El-Manzala lake and causes of low productivity. General Authority for Fish Resources Development, 2009b.
  • 33. YOUNG S.D., Chemistry of heavy metals and metaloids in soils. In: Alloway, B.J. (Ed.), Heavy metals in soils: Trace metals and metaloids in soils and their bioavailability. Environmnetal pollution. 22: Springer, pp. 41-95, 2013.
  • 34. MASSCHELEYN P.H., DELAUNE R.D., PATRICK W.H., Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol. 25, 1414-1419,1991.
  • 35. ABEDIN M.J., FELDMANN J., MEHARG A.A. Uptake kinetics of arsenic species in rice plants. Plant Physiol. 128, 1120-1128, 2002.
  • 36. JAYAWEERA G.R., BIGGAR J.W., Role of redox potential in chemical transformations of selenium in soils. Soil Sci. Soc. Am. J. 60, 1056-1063,1996.
  • 37. ZHU Y.-G., PILON-SMITS E.A.H., ZHAO F.-J., WILLIAMS P.N., MEHARG A.A., Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci. 14, 436-442, 2009.
  • 38. BLAKE L., GOULDING K.W.T., Effects of atmospheric deposition, soil pH and acidification on heavy metal contents in soils and vegetation of semi-natural ecosystems at Rothamsted Experimental Station, UK. Plant Soil. 240, 235-251,2002.
  • 39. WENDLING L.A., KIRBY J.K., MCLAUGHLIN M.J., Aging effects on cobalt availability in soils. Environ Toxicol Chem. 28, 1609-1617, 2009.
  • 40. LUO D., ZHENG H., CHEN Y., WANG G., FENGHUA D., Transfer characteristics of cobalt from soil to crops in the suburban areas of Fujian Province, southeast China. Environ Manage. 91, 2248-2253, 2010.
  • 41. WENG L., LEXMOND T.M., WOLTHOORN A., TEMMINGHOFF E.J.M., VAN RIEMSDIJK W.H., Phytotoxicity and bioavailability of nickel: Chemical speciation and bioaccumulation. Environ Toxicol Chem. 22, 2180-2187, 2003.
  • 42. ALLOWAY B.J. (Ed)., Heavy metal in soil. Blackie, London, 1998.
  • 43. LIU J., QIAN M., CAI G., YANG J., ZHU Q., Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. J Hazard Mater. 143, 443-447, 2007a.
  • 44. LIU W.X., SHEN L.F., LIU J.W., WANG Y.W., LI S.R. Uptake of toxic heavy metals by rice (Oryza sativa L.) cultivated in the agricultural soil near Zhengzhou city, people’s republic of China. Bull. Environ. Contam. Toxicol. 79, 209-213, 2007b.
  • 45. BHATTACHARYYA P., CHAKRABARTI K., CHAKRABORTY A., TRIPATHY S., KIM K., POWELL M.A., Cobalt and nickel uptake by rice and accumulation in soil amended with municipal solid waste compost. Ecotoxicol. Environ. Saf.69, 506-512, 2008.
  • 46. LEI M., TIE B., WILLIAMS P., ZHENG Y., HUANG Y., Arsenic, cadmium, and lead pollution and uptake by rice (Oryza sativa L.) grown in greenhouse. J Soils Sediments 11, 115-123,2011.
  • 47. KIM Y.-Y., YANG Y.-Y., LEE Y., Pb and Cd uptake in rice roots. Physiologia Plantarum 116, 368-372, 2002.
  • 48. LI J.X., YANG X.E., HE Z.L., JILANI G., SUN C.Y., CHEN S.M., Fractionation of lead in paddy soils and its bioavailability to rice plants. Geoderma 141, 174-180, 2007.
  • 49. DAS H.K., MITRA A.K., SENGUPTA P.K., HOSSAIN A., ISLAM F., RABBANI G.H., Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environment International. 30, 383-387, 2004.
  • 50. AZIZUR RAHMAN M., HASEGAWA H., MAHFUZUR RAHMAN M., MAZID MIAH M.A., TASMIN A., Arsenic accumulation in rice (Oryza sativa L.): Human exposure through food chain. Ecotoxicol. Environ. Saf. 69, 317-324, 2008.
  • 51. CAREY A.M., SCHECKEL K.G., LOMBI E., NEWVILLE M., CHOI Y., NORTON G.J., CHARNOCK J.M., FELDMANN J., PRICE A.H., MEHARG A.A., Grain unloading of arsenic species in rice. Plant Physiol. 152, 309- 319, 2010.
  • 52. ZHAO F., STROUD J.L., KHAN M.A., MCGRATH S.P., Arsenic translocation in rice investigated using radioactive ⁷³As tracer. Plant soil. 350, 413-420, 2012.
  • 53. CAREY A.M., SCHECKEL K.G., LOMBI E., NEWVILLE M., CHOI Y., NORTON G.J., PRICE A.H., MEHARG A.A. Grain accumulation of selenium species in rice (Oryza sativa L.). Environ Sci Technol. 46, 5557-5564, 2012.
  • 54. ZHANG L.-H., SHI W.-M., WANG X.-C., Difference in selenium accumulation in shoots of two rice cultivars. Pedosphere. 16, 646-653, 2006a.
  • 55. RIAZ A., KHATTAK R.A., PAGE A.L., PARKER D.R., BAKHTAR D., Accumulation and interactions of arsenic, selenium, molybdenum and phosphorus in alfalfa. J Environ Qual. 20, 165-168,1991.
  • 56. ZHENG N., WANG Q., ZHANG X., ZHENG D., ZHANG Z., ZHANG S., Population health risk due to dietary intake of heavy metals in the industrial area of Huludao city, China. Sci. Total Environ. 387, 96-104, 2007.
  • 57. JUNG M.C., THORNTON I. Environmental contamination and seasonal variation of metals in soils, plants and waters in the paddy fields around a Pb-Zn mine in Korea. Sci. Total Environ. 198, 105-121,1997.
  • 58. LIU J., ZHANG X., TRAN H., WANG D., ZHU Y. Heavy metal contamination and risk assessment in water, paddy soil, and rice around an electroplating plant. Environ Sci Pollut Res Int. 18, 1623-1632, 2011.
  • 59. MEHARG A. A., JARDINE L., Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol.157, 39-44, 2003.
  • 60. ABBAS M., MEHARG A., Arsenate, arsenite and dimethyl arsenic acid (DMA) uptake and tolerance in maize (Zea mays L.). Plant Soil. 304, 227-289, 2008.
  • 61. ZHANG L., SHI W., WANG X., Difference in selenite absorption between high- and low- selenium rice cultivars and its mechanism. Plant Soil. 282, 183-193, 2006b.
  • 62. U.S. Environmental Protection Agency (USEPA), Exposure Factors Handbook, General Factors, Volumes I and II, Chapters (1-4-7-12), U.S. Environmental Protection Agency (USEPA), Washington, DC 1997.
  • 63. ZHENG N., LIU J., WANG Q., LIANG Z., Health Risk Assessment of Heavy Metal Exposure to Street Dust in the Zinc Smelting District, Northeast of China, Sci. Total Environ. 408, 726-733, 2010.
  • 64. COMESA, Ministry of Agriculture and Land Reclamation Economic Affairs Sector (EAS), Food Balance Sheet, FAMIS/COMESA, Lusaka, Zambia 2003.
  • 65. U.S. Environmental Protection Agency (USEPA). EPA Guidelines for Exposure Assessment. Federal Register, 1992.
  • 66. FERREIRA-BAPTISTA L., DE MIGUEL E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 39, 4501-4512, 2005.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-70dd7e40-96c6-4f05-88ff-76cc834b0f70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.